In this work, the static and dynamic compaction response of a six-material mixture, containing both brittle and ductile constituents, is compared. Quasi-static and dynamic compaction experiments were conducted on samples and the results compared to simulations. Optical analyses of compacted samples indicate that dynamically compacting samples to near 300 m/s is not sufficient for complete compaction or localized grain melt. Simulations indicate that a wide distribution of temperature and stress states are achieved in the dynamically compacted samples; compaction speeds should be increased to near 800 m/s at which point copper grains achieve melt temperatures on their surfaces. The experimental data is used to fit a bulk P-α equation of state (EOS) that can be used for simulating large-scale dynamic compaction for industrial applications.

References

References
1.
Gourdin
,
W. H.
,
1986
, “
Dynamic Consolidation of Metal Powders
,”
Prog. Mater. Sci.
,
30
(
1
), pp.
39
80
.
2.
Linde
,
R. K.
, and
Schmidt
,
D. N.
,
1966
, “
Shock Propagation in Nonreactive Porous Solids
,”
J. Appl. Phys.
,
37
(
8
), pp.
3259
3271
.
3.
Marsh, S.P.,
1980
,
LASL Shock Hugoniot Data
,
University of California Press
,
Oakland, CA
.
4.
Boade
,
R. R.
,
1970
, “
Principle Hugoniot, Second-Shock Hugoniot, and Release Behavior of Pressed Copper Powder
,”
J. Appl. Phys.
,
41
(
11
), pp.
4542
4551
.
5.
Borg
,
J. P.
,
Chapman
,
D. J.
,
Tsembelis
,
K.
,
Proud
,
W. G.
, and
Cogar
,
J. R.
,
2005
, “
Dynamic Compaction of Porous Silica Powder
,”
J. Appl. Phys.
,
98
(
7
), p.
073509
.
6.
The Boeing Company
,
1969
, “
Hugoniot Equation of State of Mylar
,” Report No. D2-125304-1.
7.
Vandersall
,
K. S.
, and
Thadhani
,
N. N.
,
2000
, “
Shock Compression of Mo-Si Powder Mixtures Using Recovery and Instrumented Experiments
,” Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, (
GSCCM
), M. D. Furnish, L. C. Chhabildas, and R. S. Hixson, eds., American Institute of Physics, Woodbury, NY, Vol. 505, pp.
763
766
.
8.
Mitra
,
N. R.
,
Decker
,
D. L.
, and
Vanfleet
,
H. B.
,
1967
, “
Melting Curves of Copper, Silver, Gold, and Platinum to 70 kbar
,”
Phys. Rev.
,
161
(
3
), pp.
613
617
.
9.
Haynes
,
W. M.
,
2015
,
CRC Handbook of Chemistry and Physics
,
96th ed.
, CRC Press, Boca Raton.
10.
ASTM D7481-09
,
2009
, “
Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders Using a Graduated Cylinder
,” ASTM International, West Conshohocken, PA, www.astm.org
11.
Jordan
,
J. L.
, and
Baer
,
M. R.
,
2012
, “
Mixture Model for Determination of Shock Equation of State
,”
J. Appl. Phys.
,
111
(
8
), p.
083516
.
12.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley
,
New York
.
13.
Braun
,
C. A.
,
2011
, “
One-Dimensional Strain Initiated by Rapid Compaction of a Heterogeneous Granular Mixture Consisting of Cu, Fe, SiO2, C, MoS2, and Sn
,” M.S. thesis, Marquette University, Milwaukee, WI.
14.
Rosenberg
,
Z.
,
1981
, “
The Use of Manganin Gauges in Shock Reverberation Experiments
,”
J. Appl. Phys.
,
52
(
6
), pp.
4000
4002
.
15.
Benham
,
R. A.
,
Weirick
,
L. J.
, and
Lee
,
L. M.
,
1996
, “
Calibration Of Thin-Foil Manganin Gauge In ALOX Material
,” Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter (
GSCCM
), S. C. Schmidt and W. C. Tao, eds., American Institute of Physics, Woodbury, NY, Vol. 370, pp.
1061
1064
.
16.
Rosenberg
,
Z.
,
Yaziv
,
D.
, and
Partom
,
Y.
,
1980
, “
Calibration of Foil-Like Manganin Gauges in Planar Shock Wave Experiments
,”
J. Appl. Phys.
,
51
(
7
), pp.
3702
3705
.
17.
Wilkins
,
M. L.
,
1999
,
Computer Simulation of Dynamic Phenomena
,
Springer-Verlag
,
Berlin, Heidelberg
.
18.
Borg
,
J.
,
Lloyd
,
A.
,
Ward
,
A.
,
Cogar
,
J. R.
,
Chapman
,
D.
, and
Proud
,
W. G.
,
2006
, “
Computational Simulations of the Dynamic Compaction of Porous Media
,”
Int. J. Impact Eng.
,
33
(
1–12
), pp.
109
118
.
19.
McGlaun
,
J. M.
,
Thompson
,
S. L.
, and
Elrick
,
M. G.
,
1990
, “
CTH: A Three-Dimensional Shock Wave Physics Code
,”
Int. J. Impact Eng.
,
10
(
1–4
), pp.
351
360
.
20.
Herrmann
,
W.
,
1969
, “
Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials
,”
J. Appl. Phys.
,
40
(
6
), pp.
2490
2499
.
21.
Benson
,
D. J.
,
1994
, “
An Analysis by Direct Numerical Simulation of the Effects of Particle Morphology on the Shock Compaction of Copper Powder
,”
Modell. Simul. Mater. Sci. Eng.
,
2
, pp.
535
550
.
22.
Borg
,
J. P.
, and
Vogler
,
T. J.
,
2009
, “
Aspects of Simulating the Dynamic Compaction of a Granular Ceramic
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
4
), p.
045003
.
23.
Borg
,
J.
, and
Vogler
,
T.
,
2013
, “
Rapid Compaction of Granular Material: Characterizing Two and Three-Dimensional Mesoscale Simulations
,”
Shock Waves
,
23
(
2
), pp.
153
176
.
24.
Swegle
,
J. W.
, and
Grady
,
D. E.
,
1985
, “
Shock Viscosity and the Prediction of Shock Wave Rise Times
,”
J. Appl. Phys.
,
58
(
2
), pp.
692
701
.
25.
Borg
,
J.
,
Lloyd
,
A.
,
Ward
,
A.
,
Cogar
,
J. R.
,
Chapman
,
D.
, and
Proud
,
W. G.
,
2006
, “
Computational Simulations of the Dynamic Compaction of Porous Media
,”
Int. J. Impact Eng.
,
33
(
1–2
), pp.
109
118
.
26.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley
,
New York
, pp.
149
151
.
27.
Cooper
,
P.
,
1996
,
Explosives Engineering
,
Wiley-VCH
, Weinheim, Germany, p.
213
.
28.
Grady
,
D. E.
,
2010
, “
Structured Shock Waves and the Fourth Power Law
,”
J. Appl. Phys.
,
107
(
1
), p.
013506
.
29.
Hayes
,
D.
,
Hixson
,
R. S.
, and
McQueen
,
R. G.
,
1999
, “
High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State From Release Wave Measurements in Shock-Loaded Copper
,” Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, M. D. Furnish, L. C. Chhabildas, and R. S. Hixson, eds., American Institute of Physics, Woodbury, NY, Vol. 505, pp.
483
488
.
30.
Mutz
,
A. H.
, and
Vreeland
,
T.
, Jr.
,
1993
, “
Thermoelectric Measurements of Energy Deposition During Shock-Wave Consolidation of Metal Powders of Several Sizes
,”
J. Appl. Phys.
,
73
(
10
), pp.
4862
4868
.
31.
Asay
,
J. R.
, and
Hayes
,
D. B.
,
1975
, “
Shock-Compression and Release Behavior Near Melt States in Aluminum
,”
J. Appl. Phys.
,
46
(
11
), pp.
4789
4800
.
32.
Kline
,
S. J.
,
1985
, “
The Purposes of Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
153
160
.
33.
Taylor
,
J. R.
,
1997
,
Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
University Science Books
,
Sausalito, CA
.
34.
Swegle
,
J. W.
, and
Grady
,
D. E.
,
1985
, “
Shock Viscosity and the Prediction of Shock Wave Rise Times
,”
J. Appl. Phys.
,
58
(
2
), pp.
692
701
.
35.
Vogler
,
T. J.
,
Borg
,
J. P.
, and
Grady
,
D. E.
,
2012
, “
On the Scaling of Steady Structured Waves in Heterogeneous Materials
,”
J. Appl. Phys.
,
112
(
12
), p.
123507
.
36.
Ravichandran
,
G.
,
Zhuang
,
S.
, and
Grady
,
D. E.
,
2003
, “
An Experimental Investigation of Shock Wave Propagation in Periodically Layered Composites
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
245
265
.
37.
Grady
,
D. E.
,
2010
, “
Structured Shock Waves and the Fourth Power Law
,”
J. Appl. Phys.
,
107
(
1
), p.
013506
.
38.
Ravichandran
,
G.
,
Zhuang
,
S.
, and
Grady
,
D. E.
,
2003
, “
An Experimental Investigation of Shock Wave Propagation in Periodically Layered Composites
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
245
265
.
You do not currently have access to this content.