High damping rubber (HDR) is used in the manufacturing of elastomeric bearings for seismic isolation of building and structures. In practical situations, rubber bearings are subjected to a permanent vertical load which may change at the occurrence of the earthquake, and concurrent shear deformation, due to either service movements of the structure or earthquake-induced ground motion. The study presents an experimental procedure for the assessment of HDR specimens under combined compression and shear, reproducing the same typical load regimes which rubber isolators experience in service. Five commercial HDRs were tested according to the procedure. The results point to the importance of considering the influence of the compression stress for a correct understanding of the behavior of HDRs under cyclic shear.

References

References
1.
Taylor
,
A. W.
,
Lin
,
A. N.
, and
Martin
,
J. W.
,
1992
, “
Performance of Elastomers in Isolation Bearings: A Literature Review
,”
Earthquake Spectra
,
8
(
2
), pp.
279
304
.
2.
Skinner
,
R. I.
,
Robinson
,
W. H.
, and
McVerry
,
G. H.
,
1993
,
An Introduction to Seismic Isolation
,
Wiley
,
New York
.
3.
Naeim
,
F.
, and
Kelly
,
J. M.
,
1999
,
Design of Seismic Isolated Structures
,
Wiley
,
New York
.
4.
Constantinou
,
M. C.
,
Whittaker
,
A. S.
,
Kalpakidis
,
Y.
,
Fenz
,
D. M.
, and
Warn
,
G. P.
,
2007
, “
Performance of Seismic Isolation Hardware Under Service and Seismic Loading
,” Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, Buffalo, NY, Technical Report No. MCEER-07-0012.
5.
Itoh
,
Y.
,
Gu
,
H.
,
Satoh
,
K.
, and
Katsuna
,
Y.
,
2006
, “
Experimental Investigation on Ageing Behaviors of Rubbers Used for Bridge Bearings
,”
Struct. Eng./Earthquake Engineering
,
23
(
1
), pp.
17s
31s
.
6.
Cole
,
J. E.
,
1979
, “
Frequency, Amplitude, and Load Effects on the Dynamic Properties of Elastomers
,”
Shock Vib. Bull.
,
49
, pp.
105
117
.
7.
Cardone
,
D.
,
Gesualdi
,
G.
, and
Nigro
,
D.
,
2011
, “
Effects of Air Temperature on the Cyclic Behavior of Elastomeric Seismic Isolators
,”
Bull. Earthquake Eng.
,
9
(
4
), pp.
1227
1255
.
8.
Thompson
,
A. C. T.
,
Whittaker
,
A. S.
,
Fenves
,
G. L.
, and
Mahin
,
S. A.
,
2000
, “
Property Modification Factors for Elastomeric Seismic Isolation Bearings
,”
14th World Conference on Earthquake Engineering
,
Beijing
, Oct. 12–17, Paper No. 1307.
9.
Warn
,
G. P.
,
2006
, “
The Coupled Horizontal–Vertical Response of Elastomeric and Lead–Rubber Seismic Isolation Bearings
,” Ph.D. thesis, State University of New York at Buffalo, NY.
10.
CEN
,
2009
, “
Anti-Seismic Devices
,” European Committee for Standardization (CEN), Brussels, Standard No. EN 15129.
11.
ISO
,
2010
, “
Elastomeric Seismic–Protection Isolators—Part 1: Test Methods
,” International Organization for Standardization (ISO), Geneva, Standard No. ISO 22762.
12.
AASHTO
,
2014
,
Guide Specifications for Seismic Isolation Design
,
4th ed.
,
American Association of State Highway and Transportation Officials (AASHTO)
,
Washington, DC
.
13.
Kelly
,
J. M.
,
1991
, “
Dynamic and Failure Characteristics of Bridgestone Isolation Bearings
,” Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. UCB/EERC-91/04.
14.
Aiken
,
I. D.
,
Kelly
,
J. M.
,
Clark
,
P. W.
,
Tamura
,
K.
,
Kikuchi
,
M.
, and
Itoh
,
T.
,
1992
, “
Experimental Studies of the Mechanical Characteristics of Three Types of Seismic Isolation Bearings
,”
10th World Conference on Earthquake Engineering
,
Madrid, Spain
, July 19–24, pp.
2281
2286
.
15.
Kelly
,
J. M.
,
1993
,
Earthquake-Resistant Design With Rubber
,
Springer-Verlag
,
London
.
16.
Mori
,
T.
,
Moss
,
P. J.
,
Cooke
,
N.
, and
Carr
,
A. J.
,
1999
, “
The Behavior of Bearings Used for Seismic Isolators Under Shear and Axial Load
,”
Earthquake Spectra
,
15
(
2
), pp.
199
224
.
17.
Iizuka
,
M.
,
2000
, “
A Macroscopic Model For Predicting Large-Deformation Behaviors of Laminated Rubber Bearings
,”
Eng. Struct.
,
22
(
4
), pp.
323
334
.
18.
Ryan
,
K. L.
,
Kelly
,
J. M.
, and
Chopra
,
A. K.
,
2004
, “
Experimental Observation of Axial Load Effects in Isolation Bearings
,”
13th World Conference on Earthquake Engineering
,
Vancouver
,
BC
, Canada, July 1–6, Paper No. 1707.
19.
Abe
,
M.
,
Yoshida
,
J.
, and
Fujino
,
Y.
,
2004
, “
Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. I: Experimental Study
,”
J. Struct. Eng.
,
130
(
8
), pp.
1119
1132
.
20.
Burtscher
,
S. L.
, and
Dorfmann
,
A.
,
2004
, “
Compression and Shear Tests of Anisotropic High Damping Rubber Bearings
,”
Eng. Struct.
,
26
(
13
), pp.
1979
1991
.
21.
Ahmadi
,
H. R.
,
Kingston
,
J. G. R.
,
Muhr
,
A. H.
,
Gracia
,
L. A.
, and
Gómez
,
B.
,
2003
, “
Interpretation of the High–Low-Strain Modulus of Filled Rubbers as an Inelastic Effect
,”
Constitutive Models for Rubber III
,
J.
Busfield
, and
A.
Muhr
, eds.,
Balkema
,
Rotterdam, The Netherlands
, pp.
357
364
.
22.
Gent
,
A. N.
,
1962
, “
Relaxation Processes in Vulcanized Rubber. I: Relation Among Stress Relaxation, Creep, Recovery, and Hysteresis
,”
J. Appl. Polym. Sci.
,
6
(
22
), pp.
433
441
.
23.
Gent
,
A. N.
,
1962
, “
Relaxation Processes in Vulcanized Rubber. II: Secondary Relaxation Due to Network Breakdown
,”
J. Appl. Polym. Sci.
,
6
(
22
), pp.
442
448
.
24.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
(
1
), pp.
339
362
.
25.
Bueche
,
F.
,
1960
, “
Mechanical Degradation of High Polymers
,”
J. Appl. Polym. Sci.
,
4
(
10
), pp.
101
106
.
26.
Charlton
,
D. J.
,
Yang
,
J.
, and
Teh
,
K. K.
,
1994
, “
A Review of Methods to Characterize Rubber Elastic Behavior for Use in Finite Element Analysis
,”
Rubber Chem. Technol.
,
67
(
3
), pp.
481
503
.
27.
Nicholson
,
D. W.
,
Nelson
,
N. W.
,
Lin
,
B.
, and
Farinella
,
A.
,
1998
, “
Finite Element Analysis of Hyperelastic Components
,”
ASME Appl. Mech. Rev.
,
51
(
5
), pp.
303
320
.
28.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
29.
Amin
,
A. F. M. S.
,
Wiraguna
,
S. I.
,
Bhuiyan
,
A. R.
, and
Okui
,
Y.
,
2006
, “
Hyperelasticity Model for Finite Element Analysis of Natural and High Damping Rubbers in Compression and Shear
,”
J. Eng. Mech.
,
132
(
1
), pp.
54
64
.
30.
Mooney
,
M.
,
1940
, “
A Theory of Elastic Deformations
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
31.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials, Fundamental Concepts
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
(
882
), pp.
459
490
.
32.
Blatz
,
R. J.
, and
Ko
,
W. L.
,
1962
, “
Application of Finite Elasticity Theory to the Deformation of Rubber Materials
,”
Trans. Soc. Rheol.
,
6
(
1
), pp.
223
251
.
33.
Besseling
,
J. E.
,
1983
, “
Finite Element Properties Based Upon Elastic Potential Interpolation
,”
Hybrid and Mixed Finite Element Methods
,
S. N.
Atluri
,
R. H.
Gallagher
, and
O. C.
Zienkiewicz
, eds.,
Wiley
,
New York
, pp.
253
266
.
34.
Peng
,
S. T. J.
, and
Landel
,
R. E.
,
1972
, “
Stored Energy Function of Rubberlike Materials Derived From Simple Tensile Data
,”
J. Appl. Phys.
,
43
(
7
), pp.
3063
3067
.
35.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
326
(
1567
), pp.
565
584
.
36.
van den Bogert
,
P. A. J.
, and
de Borst
,
R.
,
1994
, “
On the Behaviour of Rubberlike Materials in Compression and Shear
,”
Arch. Appl. Mech.
,
64
(
2
), pp.
136
146
.
37.
Amin
,
A. F. M. S.
,
Alam
,
M. S.
, and
Okui
,
Y.
,
2002
, “
An Improved Hyperelasticity Relation in Modeling Viscoelasticity Response of Natural and High Damping Rubbers in Compression: Experiments, Parameter Identification, and Numerical Verification
,”
Mech. Mater.
,
34
(
2
), pp.
75
95
.
38.
ISO
,
2005
, “
Rubber, Vulcanized or Thermoplastic—Determination of Dynamic Properties—Part 1: General Guidance
,” International Organization for Standardization (ISO), Geneva, Standard No. ISO 4664-1.
39.
ASTM
,
1989
, “
Standard Specification for Plain and Steel-Laminated Elastomeric Bearings for Bridges
,” American Section of the International Association for Testing Materials (ASTM), West Conshohocken, PA, Standard No. D4014-89.
40.
ISO
,
2011
, “
Rubber, vulcanized or thermoplastic - Determination of Shear Modulus and Adhesion to Rigid Plates. Quadruple-Shear Methods
,” International Organization for Standardization (ISO), Geneva, Standard No. ISO 1827.
41.
Smith
,
L. P.
,
1993
,
The Language of Rubber: An Introduction to the Specification and Testing of Elastomers
,
Butterworth-Heinemann
,
Oxford, UK
.
42.
Arditzoglou
,
Y. J.
,
Yura
,
J. A.
, and
Haines
,
A. H.
,
1995
, “
Test Methods for Elastomeric Bearings on Bridges
,” The University of Texas at Austin, Austin, TX, Research Report No. 1304-2.
43.
Gent
,
A. N.
,
2001
,
Engineering With Rubber: How to Design Rubber Components
,
2nd ed.
,
Hanser Publishers
,
Munich, Germany
.
44.
Dick
,
J. S.
,
2003
,
Basic Rubber Testing: Selecting Methods for a Rubber Test Program
,
ASTM International
,
West Conshohocken, PA
.
45.
Violaine
,
T.
,
Quang Tam
,
N.
, and
Christophe
,
F.
,
2015
, “
Experimental Study on High Damping Rubber Under Combined Action of Compression and Shear
,”
ASME J. Eng. Mater. Technol.
,
137
(
1
), p.
011007
.
46.
Quaglini
,
V.
,
Dubini
,
P.
, and
Poggi
,
C.
,
2012
, “
Experimental Assessment of Sliding Materials for Seismic Isolation Systems
,”
Bull. Earthquake Eng.
,
10
(
2
), pp.
717
740
.
47.
Mullins
,
L.
,
1948
, “
Effect of Stretching on the Properties of Rubber
,”
J. Rubber Res.
,
16
(
2
), pp.
275
282
.
48.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2004
, “
A Constitutive Model for the Mullins Effect With Permanent Set in Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
41
(
7
), pp.
1855
1878
.
49.
Hamed
,
G. R.
, and
Hatfield
,
S.
,
1989
, “
On the Role of Bound Rubber in Carbon Black Reinforcement
,”
Rubber Chem. Technol.
,
62
(
1
), pp.
143
156
.
50.
Ryan
,
K. L.
,
Kelly
,
J. M.
, and
Chopra
,
A. K.
,
2005
, “
Nonlinear Model for Lead–Rubber Bearings Including Axial-Load Effects
,”
Int. J. Mech. Sci.
,
30
(
12
), pp.
933
1043
.
51.
ISO
,
2010
, “
Elastomeric Seismic-Protection Isolators—Part 2: Application for Bridges
,” International Organization for Standardization (ISO), Geneva, Standard No. ISO 22762.
You do not currently have access to this content.