Fatigue analysis of a simply supported composite plate with laminate configuration of [0n/90n]s under central patch impulse loading is presented using an analytical method. The method mainly consists of two steps, one, evaluation of vibration induced stresses for the given central patch impulse loading using modal analysis, and two, fatigue analysis using S–N curve approach, residual strength approach as well as failure function approach. The stress state in the plate was evaluated using viscous damping model as a function of time. The stress-time history was converted into block loading consisting of many sub-blocks. In the present study, the block loading consisted of four sub-blocks and a total of 175 numbers of cycles. The block loading was repeated after every 5 s. Next, fatigue analysis was carried out based on the block loading condition evaluated. Number of loading blocks for fatigue failure initiation and the location of failure were obtained. Studies were also carried out using two-dimensional (2D) finite element analysis (FEA). Number of loading blocks required to cause fatigue failure initiation under central patch impulse loading was found to be 3120 and 3170 using the analytical method and 2D FEA, respectively.

References

References
1.
Jayaprakash
,
K.
,
Desai
,
Y. M.
, and
Naik
,
N. K.
,
2013
, “
Fatigue Behavior of [0n/90n]s Composite Cantilever Beam Under Tip Impulse Loading
,”
Compos. Struct.
,
99
, pp.
255
263
.10.1016/j.compstruct.2012.12.009
2.
Singh
,
M. P.
, and
Abdelnaser
,
A. S.
,
1992
, “
Random Response of Symmetric Cross-Ply Composite Beams With Arbitrary Boundary Conditions
,”
AIAA J.
,
30
(
4
), pp.
1081
1088
.10.2514/3.11030
3.
Kwon
,
Y. W.
, and
Aygunes
,
H.
,
1996
, “
Dynamic Finite Element Analysis of Laminated Beam With Delamination Cracks Using Contact Impact Conditions
,”
Compos. Struct.
,
58
(
6
), pp.
1161
1169
.10.1016/0045-7949(95)00202-2
4.
Kadivar
,
M. H.
, and
Mohebpour
,
S. R.
,
1998
, “
Finite Element Dynamic Analysis of Unsymmetric Composite Laminated Beams With Shear Effect and Rotary Inertia Under the Action of Moving Loads
,”
Finite Elem. Anal. Design
,
29
(
3–4
), pp.
259
273
.10.1016/S0168-874X(98)00024-9
5.
Zibdeh
,
H. S.
, and
Abu-Hilal
,
M.
,
2003
, “
Stochastic Vibration of Laminated Composite Coated Beam Traversed by a Random Moving Load
,”
Eng. Struct.
,
25
(
3
), pp.
397
404
.10.1016/S0141-0296(02)00181-5
6.
Ganesan
,
R.
, and
Kowda
,
V. K.
,
2005
, “
Free-Vibration of Composite Beam-Columns With Stochastic Material and Geometric Properties Subjected to Random Axial Loads
,”
J. Reinf. Plast. Comp.
,
24
(
1
), pp.
69
91
.10.1177/0731684405042951
7.
Pandit
,
M. K.
,
Haldar
,
S.
, and
Mukopadhyay
,
M.
,
2007
, “
Free Vibration Analysis of Laminated Composite Rectangular Plate Using Finite Element Method
,”
J. Reinf. Plast. Compos.
,
26
(
1
), pp.
69
80
.10.1177/0731684407069955
8.
Dai
,
X. J.
,
Lin
,
J. H.
,
Chen
,
H. R.
, and
Williams
,
F. W.
,
2008
, “
Random Vibration of Composite Structures With an Attached Frequency-Dependent Damping Layer
,”
Compos., Part B
,
39
(
2
), pp.
403
413
.10.1016/j.compositesb.2007.01.006
9.
Liu
,
G. R.
,
Zhao
,
X.
,
Dai
,
K. Y.
,
Zhong
,
Z. H.
,
Li
,
G. Y.
, and
Han
,
X.
,
2008
, “
Static and Free Vibration Analysis of Laminated Composite Plates Using the Conforming Radial Point Interpolation Method
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
354
366
.10.1016/j.compscitech.2007.07.014
10.
Shaker
,
A.
,
Abdelrahman
,
W. G.
,
Tawfik
,
M.
, and
Sadek
,
E.
,
2008
, “
Stochastic Finite Element Analysis of the Free Vibration of Laminated Composite Plates
,”
Comput. Mech.
,
41
(
4
), pp.
493
501
.10.1007/s00466-007-0205-7
11.
Kiral
,
Z.
,
2009
, “
Dynamic Response of Symmetric Laminated Composite Beams to Moving Load With Different Boundary Conditions
,”
J. Reinf. Plast. Comp.
,
28
(
20
), pp.
2511
2526
.10.1177/0731684408092401
12.
Rezwani
,
M. J.
,
Kargarnovin
,
M. H.
, and
Younesian
,
D.
,
2011
, “
Dynamic Analysis of Composite Beam Subjected to Harmonic Moving Load Based on the Third Order Shear Deformation Theory
,”
Front. Mech. Eng.
,
6
(
4
), pp.
409
418
.10.1007/s11465-011-0245-8
13.
Kahya
,
V.
,
2012
, “
Dynamic Analysis of Laminated Composite Beams Under Moving Loads Using Finite Element Method
,”
Nucl. Eng. Des.
,
243
, pp.
41
48
.10.1016/j.nucengdes.2011.12.015
14.
Shen
,
X.
,
Lan
,
J.
,
Yang
,
X.
, and
Ji
,
F.
,
2012
, “
Modal Analysis of Laminated Composite Beam Based on Elastic Wave Theory
,”
Appl. Mech. Mater.
,
151
, pp.
275
280
.10.4028/www.scientific.net/AMM.151.275
15.
Zhu
,
P.
,
Lei
,
Z. X.
, and
Liew
,
K. M.
, “
Static and Free Vibration Analyses of Carbon Nanotube-Reinforced Composite Plates Using Finite Element Method With First Order Shear Deformation Plate Theory
,”
Compos. Struct.
,
94
(
4
), pp.
1450
1460
.10.1016/j.compstruct.2011.11.010
16.
Li
,
D.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2013
, “
A Layerwise/Solid-Element Method of the Linear Static and Free Vibration Analysis for the Composite Sandwich Plates
,”
Compos. Part B
,
52
, pp.
187
198
.10.1016/j.compositesb.2013.04.031
17.
Boscolo
,
M.
,
2013
, “
Analytical Solution for Free Vibration Analysis of Composite Plates With Layer-Wise Displacement Assumptions
,”
Compos. Struct.
,
100
, pp.
493
510
.10.1016/j.compstruct.2013.01.015
18.
Roy
,
P. K.
, and
Ganesan
,
N.
,
1995
, “
Transient Response of a Cantilever Beam Subjected to an Impulse Load
,”
J. Sound Vib.
,
183
(
5
), pp.
873
880
.10.1006/jsvi.1995.0291
19.
Didyk
,
R. P.
, and
Masakovskii
,
E. A.
,
1999
, “
Investigation of Field of Dynamic Stress With Impulse Loading
,”
Int. Appl. Mech.
,
35
(
2
), pp.
170
174
.10.1007/BF02682151
20.
de la Fuente
,
E.
,
2009
, “
Von Mises Stresses in Random Vibration of Linear Structures
,”
Comput. Struct.
,
87
(
21–22
), pp.
1253
1262
.10.1016/j.compstruc.2009.06.008
21.
Broutman
,
L. J.
, and
Sahu
,
S.
,
1972
, “
A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforced Plastics
,” 2nd Conference on Composite Materials: Testing and Design, Anaheim, CA, Apr. 20–22, American Society for Testing and Materials, West Conshohocken, PA,
ASTM
STP 497, Vol.
2
, pp.
170
188
.10.1520/STP27746S
22.
Hashin
,
Z.
, and
Rotem
,
A.
,
1978
, “
A Cumulative Damage Theory of Fatigue Failure
,”
J. Mater. Sci. Eng.
,
34
(
2
), pp.
147
160
.10.1016/0025-5416(78)90045-9
23.
Wang
,
A. S. D.
,
Chou
,
P. C.
, and
Alper
,
J.
,
1981
, “
Effect of Proof Test on the Strength and Fatigue Life of a Unidirectional Composite
,” Fatigue of Fibrous Composite Materials, San Francisco, May 22-23, American Society for Testing and Materials, West Conshohocken, PA,
ASTM
STP 723, pp.
116
132
.10.1520/STP27617S
24.
Rotem
,
A.
, and
Nelson
,
H. G.
,
1989
, “
Failure of a Laminated Composite Under Tension-Compression Fatigue Loading
,”
Compos. Sci. Tech.
,
36
(
1
), pp.
45
62
.10.1016/0266-3538(89)90015-8
25.
Sendeckyj
,
G. P.
,
1991
, “
Life Prediction for Resin Matrix Composite Materials
,”
Fatigue of Composite Materials
,
K. L.
Reifsnider
,
ed.
,
Elsevier
,
Amsterdam
, pp.
431
483
.
26.
Otani
,
N.
, and
Song
,
D. Y.
,
1997
, “
Fatigue Life Prediction of Composites Under Two Stage Loading
,”
J. Mater. Sci.
,
32
(
3
), pp.
755
760
.10.1023/A:1018560423889
27.
Schaff
,
J. R.
, and
Davidson
,
B. D.
,
1997
, “
Life Prediction Methodology for Composite Structures. Part 1—Constant Amplitude and Two-Stress Level Fatigue
,”
J. Compos. Mater.
,
31
(
2
), pp.
128
157
.10.1177/002199839703100202
28.
Schaff
,
J. R.
, and
Davidson
,
B. D.
,
1997
, “
Life Prediction Methodology for Composite Structures. Part II—Spectrum Fatigue
,”
J. Compos. Mater.
,
31
(
2
), pp.
158
181
.10.1177/002199839703100203
29.
Jen
,
M. H. R.
, and
Lee
,
C. H.
,
1998
, “
Strength and Life in Thermoplastic Composite Laminates Under Static and Fatigue Loads, Part II: Formulation
,”
Int. J. Fatigue
,
20
(
9
), pp.
617
629
.10.1016/S0142-1123(98)00030-9
30.
Abousalleh
,
M.
, and
Boukhili
,
R.
,
1998
, “
Life Prediction for Composite Laminates Submitted to Service Loading Spectra
,”
Polym. Compos.
,
19
(
3
), pp.
241
245
.10.1002/pc.10096
31.
Barron
,
V.
,
Buggy
,
M.
, and
McKenna
,
N. H.
,
2001
, “
Frequency Effects on the Fatigue Behaviour on Carbon Fibre Reinforced Polymer Laminates
,”
J. Mater. Sci.
,
36
(7), pp.
1755
1761
.10.1023/A:1017576725885
32.
Philippidis
,
T. P.
, and
Vassilopoulos
,
A. P.
,
2002
, “
Complex Stress State Effect on Fatigue Life of GRP Laminates. Part II, Theoretical Formulation
,”
Int. J. Fatigue
,
24
(
8
), pp.
825
830
.10.1016/S0142-1123(02)00004-X
33.
Found
,
M. S.
, and
Quaresimin
,
M.
,
2003
, “
Two-Stage Loading of Woven Carbon Fibre Reinforced Laminates
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
(
1
), pp.
17
26
.10.1046/j.1460-2695.2003.00583.x
34.
Epaarachchi
,
J. A.
, and
Clausen
,
P. D.
,
2003
, “
An Empirical Model for Fatigue Behaviour Prediction of Glass Fibre Reinforced Plastic Composites for Various Stress Ratios and Test Frequencies
,”
Compos. Part A
,
34
(
4
), pp.
313
326
.10.1016/S1359-835X(03)00052-6
35.
Epaarachchi
,
J. A.
, and
Clausen
,
P. D.
,
2005
, “
A New Cumulative Fatigue Damage Model for Glass Fibre Reinforced Plastic Composites Under Step/Discrete Loading
,”
Compos. Part A
,
36
(
9
), pp.
1236
1245
.10.1016/j.compositesa.2005.01.021
36.
Mohandesi
,
A. J.
, and
Majidi
,
B.
,
2009
, “
Fatigue Damage Accumulation in Carbon/Epoxy Laminated Composites
,”
Mater. Des.
,
30
(
6
), pp.
1950
1956
.10.1016/j.matdes.2008.09.012
37.
Quaresimin
,
M.
,
Susmel
,
L.
, and
Talreja
,
R.
,
2010
, “
Fatigue Behaviour and Life Assessment of Composite Laminates Under Multiaxial Loadings
,”
Int. J. Fatigue
,
32
(
1
), pp.
2
16
.10.1016/j.ijfatigue.2009.02.012
38.
Passipoularidis
,
V. A.
,
Philippidis
,
T. P.
, and
Brondsted
,
P.
,
2011
, “
Fatigue Life Prediction in Composites Using Progressive Damage Modeling Under Block and Spectrum Loading
,”
Int. J. Fatigue
,
33
(
2
), pp.
132
144
.10.1016/j.ijfatigue.2010.07.011
39.
Mikitarenko
,
M. A.
, and
Perelmuter
,
A. V.
,
1998
, “
Safe Fatigue Life of Wind Towers Under the Action of Wind Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
1091
1100
.10.1016/S0167-6105(98)00100-7
40.
Liu
,
X.
,
Sooklal
,
V. K.
,
Verges
,
M. A.
, and
Larson
,
M. C.
,
2006
, “
Experimental Study and Life Prediction on High Cycle Vibration Fatigue in BGA Packages
,”
Microelectron. Reliab.
,
46
(
7
), pp.
1128
1138
.10.1016/j.microrel.2005.09.011
41.
Gupta
,
S.
,
Shabakhty
,
N.
, and
Gelder
,
P. V.
,
2006
, “
Fatigue Damage in Randomly Vibrating Jack-Up Platforms Under Non-Gaussian Loads
,”
Appl. Ocean Res.
,
28
(
6
), pp.
407
419
.10.1016/j.apor.2007.02.001
42.
Lau
,
Y. L.
,
Leung
,
R. K. C.
, and
So
,
R. M. C.
,
2007
, “
Vortex-Induced Vibration Effect on Fatigue Life Estimate of Turbine Blades
,”
J Sound Vib
,
307
(
3–5
), pp.
698
719
.10.1016/j.jsv.2007.06.029
43.
Celik
,
M.
, and
Genc
,
C.
,
2007
, “
Mechanical Fatigue of an Electronic Component Under Random Vibration
,”
Fatigue Fract. Eng. Mater. Struct.
,
31
(
7
), pp.
505
516
.10.1111/j.1460-2695.2008.01227.x
44.
Chen
,
Y. S.
,
Wang
,
C. S.
, and
Yang
,
Y. J.
,
2008
, “
Combining Vibration Test With Finite Element Analysis for the Fatigue Life Estimation of PBGA Components
,”
Microelectron. Reliab.
,
48
(
4
), pp.
638
644
.10.1016/j.microrel.2007.11.006
45.
Aykan
,
M.
, and
Celik
,
M.
,
2009
, “
Vibration Fatigue Analysis and Multi-Axial Effect in Testing of Aerospace Structures
,”
Mech. Syst. Signal Process
,
23
(
3
), pp.
897
907
.10.1016/j.ymssp.2008.08.006
46.
Mittal
,
R.
,
Singh
,
P. K.
,
Pukazhendi
,
D. M.
,
Bhasin
,
V.
,
Vaze
,
K. K.
, and
Ghosh
,
A. K.
,
2011
, “
Effect of Vibration Loading on the Fatigue Life of Part-Through Notched Pipe
,”
Int. J. Press. Vessels Pip.
,
88
(
10
), pp.
415
422
.10.1016/j.ijpvp.2011.07.004
47.
Jung
,
D. H.
, and
Gafurov
,
A.
,
2011
, “
Reliability Achievement of the Driving System Parts Through Development of Vibration-Fatigue Evaluation Method
,”
Procedia Eng
,
10
, pp.
1906
1916
.10.1016/j.proeng.2011.04.317
48.
Yu
,
D.
,
Al-Yafawi
,
A.
,
Nguyen
,
T. T.
,
Park
,
S.
, and
Chung
,
S.
,
2011
, “
High-Cycle Fatigue Life Prediction for Pb-Free BGA Under Random Vibration Loading
,”
Microelectron. Reliab.
,
51
(
3
), pp.
649
656
.10.1016/j.microrel.2010.10.003
49.
Reddy
,
J. N.
,
1999
,
Theory and Analysis of Elastic Plates and Shells
,
2nd ed.
,
CRC Press
,
New York
.
50.
ANSYS, 2010, Release 13.0 Documentation for ansys
, ANSYS Inc., Canonsburg, PA.
51.
Tan
,
S. C.
,
1988
, “
Effective Stress Fracture Models for Unnotched and Notched Multidirectional Laminate
,”
J. Compos. Mater.
,
22
(
4
), pp.
322
340
.10.1177/002199838802200402
52.
Tan
,
S. C.
,
1994
,
Stress Concentration in Laminated Composites
,
Technomic Publishing
,
Lancaster, PA
.
53.
Vinayak
,
B. G.
,
Jayaprakash
,
K.
, and
Naik
,
N. K.
,
2012
, “
Fatigue Behavior of Laminated Composites With a Circular Hole Under In-Plane Uniaxial Random Loading
,”
Mater. Des.
,
40
, pp.
245
256
.10.1016/j.matdes.2012.03.044
54.
Satapathy
,
M. R.
,
Vinayak
,
B. G.
,
Jayaprakash
,
K.
, and
Naik
,
N. K.
,
2013
, “
Fatigue Behavior of Laminated Composites With a Circular Hole Under In-Plane Multiaxial Loading
,”
Mater. Des.
,
51
, pp.
347
356
.10.1016/j.matdes.2013.04.040
55.
Moreira
,
A.
,
2007
, “
Characterization and Dynamic Analysis of Damping Effects in Composite Materials for High-Speed Flywheel Applications
,” Ph.D. thesis, Auburn University, Auburn, AL.
56.
Petyt
,
M.
,
1990
,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
, Cambridge, UK, pp.
357
361
.
You do not currently have access to this content.