A multiscale modeling approach was utilized to predict thickness reduction in steel plate heat exchangers (PHEs) utilized in combi boilers. The roles of texture and microstructure were successfully accounted for by properly coupling crystal plasticity and finite element analysis (FEA). In particular, crystal plasticity was employed to determine the proper multiaxial hardening rule to describe the material flow during the forming of PHEs, which was then implemented into the finite element (FE) metal-forming simulations. The current findings show that reliable thickness distribution predictions can be made with appropriate coupling of crystal plasticity and FEA in metal forming. Furthermore, the multiscale modeling approach presented herein constitutes an important guideline for the design of new PHEs with improved thermomechanical performance and reduced manufacturing costs.

References

References
1.
Altan
,
T.
, and
Vazquez
,
V.
,
1996
, “
Numerical Process Simulation for Tool and Process Design in Bulk Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
45
(
2
), pp.
599
615
.
2.
Gronostajski
,
J.
,
Matuszak
,
A.
,
Niechaiowicz
,
A.
, and
Zimniak
,
Z.
,
2004
, “
The System for Sheet Metal Forming Design for Complex Parts
,”
J. Mater. Process. Technol.
,
157–158
, pp.
502
507
.
3.
Zimniak
,
Z.
,
2000
, “
Problems of Multi-Step Forming Sheet Metal Process Design
,”
J. Mater. Process. Technol.
,
106
(
1–3
), pp.
152
158
.
4.
Makinouchi
,
A.
,
1996
, “
Sheet Metal Forming Simulation in Industry
,”
J. Mater. Process. Technol.
,
60
(
1–4
), pp.
19
26
.
5.
Panthi
,
S. K.
,
Ramakrishnan
,
N.
,
Pathak
,
K. K.
, and
Chouhan
,
J. S.
,
2007
, “
An Analysis of Springback in Sheet Metal Bending Using Finite Element Method (FEM)
,”
J. Mater. Process. Technol.
,
186
(
1–3
), pp.
120
124
.
6.
Thibaud
,
S.
,
Hmida
,
R. B.
,
Richard
,
F.
, and
Malecot
,
P.
,
2012
, “
A Fully Parametric Toolbox for the Simulation of Single Point Incremental Sheet Forming Process: Numerical Feasibility and Experimental Validation
,”
Simul. Modell. Pract. Theory
,
29
, pp.
32
43
.
7.
Reagan
,
J.
, and
Smith
,
E.
,
1993
,
Metal Spinning
,
Bruce Publishing
,
New York
.
8.
Shanmuganatan
,
S. P.
, and
Senthil Kumar
,
V. S.
,
2012
, “
Experimental Investigation and Finite Element Modeling on Profile Forming of Conical Component Using Al 3003(O) Alloy
,”
Mater. Des.
,
36
, pp.
564
569
.
9.
Senthil Kumar
,
V. S.
,
Viswanathan
,
D.
, and
Natarajan
,
S.
,
2006
, “
Theoretical Prediction and FEM Analysis of Superplastic Forming of AA7475 Aluminum Alloy in a Hemispherical Die
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
247
251
.
10.
Firat
,
M.
,
Kaftanoglu
,
B.
, and
Eser
,
O.
,
2008
, “
Sheet Metal Forming Analyses With an Emphasis on the Springback Deformation
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
135
148
.
11.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(
4
), pp.
1152
1211
.
12.
Inal
,
K.
,
Mishra
,
R. K.
, and
Cazacu
,
O.
,
2010
, “
Forming Simulation of Aluminum Sheets Using an Anisotropic Yield Function Coupled With Crystal Plasticity Theory
,”
Int. J. Solids Struct.
,
47
(
17
), pp.
2223
2233
.
13.
Lian
,
J.
,
Barlat
,
F.
, and
Baudelet
,
B.
,
1989
, “
Plastic Behaviour and Stretchability of Sheet Metals II. Effect of Yield Surface Shape on Sheet Forming Limit
,”
Int. J. Plast.
,
5
(
2
), pp.
131
147
.
14.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
15.
Verma
,
R. K.
,
Biswas
,
P.
,
Kuwabara
,
T.
, and
Chung
,
K.
,
2014
, “
Two Stage Deformation Modeling for DP 780 Steel Sheet Using Crystal Plasticity
,”
Mater. Sci. Eng. A
,
604
, pp.
98
102
.
16.
Hu
,
J.
,
Jonas
,
J. J.
, and
Ishikawa
,
T.
,
1998
, “
FEM Simulation of the Forming of Textured Aluminum Sheets
,”
Mater. Sci. Eng. A
,
256
(
1–2
), pp.
51
59
.
17.
Tikhovskiy
,
I.
,
Raabe
,
D.
, and
Roters
,
F.
,
2007
, “
Simulation of Earing During Deep Drawing of an Al–3% Mg Alloy (AA5754) Using a Texture Component Crystal Plasticity FEM
,”
J. Mater. Process. Technol.
,
183
(2–3), pp.
169
175
.
18.
Longue
,
B.
,
Dingle
,
M.
, and
Duncan
,
J. L.
,
2007
, “
Side-Wall Thickness in Draw Die Forming
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
191
194
.
19.
Osakada
,
K.
,
Mori
,
K.
,
Altan
,
T.
, and
Groche
,
P.
,
2011
, “
Mechanical Servo Press Technology for Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
651
672
.
20.
Canadinc
,
D.
,
Biyikli
,
E.
,
Niendorf
,
T.
, and
Maier
,
H. J.
,
2011
, “
Experimental and Numerical Investigation of the Role of Grain Boundary Misorientation Angle on the Dislocation–Grain Boundary Interactions
,”
Adv. Eng. Mater.
,
13
(4), pp.
281
287
.
21.
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Kurath
,
P.
,
2008
, “
On the Incorporation of Length Scales Associated With Pearlitic and Bainitic Microstructures Into a Visco-Plastic Self-Consistent Model
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
258
271
.
22.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
,
1993
, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metall. Mater.
,
41
(
9
), pp.
2611
2624
.
23.
Kocks
,
U. F.
,
Tomé
,
C. N.
, and
Wenk
,
H. R.
,
1998
,
Texture and Anisotropy
,
Cambridge University Press
,
New York
.
24.
Liu
,
H.
,
Yuan
,
J. L.
, and
Jin
,
J.
,
2002
, “
Visualization Simulations for a Cold Press Die
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
321
325
.
25.
Feng
,
Z. Q.
,
Vallee
,
C.
,
Fortune
,
D.
, and
Peyraut
,
F.
,
2006
, “
The 3é Hyperelastic Model Applied to the Modeling of 3D Impact Problems
,”
Finite Elem. Anal. Des.
,
43
(1), pp.
51
58
.
26.
Onal
,
O.
,
Bal
,
B.
,
Toker
,
S. M.
,
Mirzajanzadeh
,
M.
,
Canadinc
,
D.
, and
Maier
,
H. J.
,
2014
, “
Microstructure-Based Modeling of the Impact Response of a Biomedical Niobium–Zirconium Alloy
,”
J. Mater. Res.
,
29
(
10
), pp.
1123
1134
.
27.
Onal
,
O.
,
Ozmenci
,
C.
, and
Canadinc
,
D.
,
2014
, “
Multi-Scale Modeling of the Impact Response of a Strain-Rate Sensitive High-Manganese Austenitic Steel
,”
Front. Mater.
,
1
, p. 00016.
28.
Li
,
J.
,
Li
,
C.
, and
Zhou
,
T.
,
2012
, “
Thickness Distribution and Mechanical Property of Sheet Metal Incremental Forming Based on Numerical Simulation
,”
Trans. Nonferrous Met. Soc. China
,
22
(
S1
), pp.
54
60
.
29.
Padmanabhan
,
R.
,
Oliveira
,
M. C.
,
Alves
,
J. L.
, and
Menezes
,
L. F.
,
2007
, “
Influence of Process Parameters on the Deep Drawing of Stainless Steel
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1062
1067
.
30.
Xie
,
C. L.
, and
Nakamachi
,
E.
,
2002
, “
Investigations of the Formability of BCC Steel Sheets by Using Crystalline Plasticity Finite Element Analysis
,”
Mater. Des.
,
23
(
1
), pp.
59
68
.
31.
Nguyen
,
T.-D.
,
Phan
,
V.-T.
, and
Bui
,
Q.-H.
,
2015
, “
Modeling of Microstructure Effects on the Mechanical Behavior of Ultrafine-Grained Nickels Processed by Severe Plastic Deformation by Crystal Plasticity Finite Element Model
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), p.
021010
.
32.
Kirane
,
K.
,
Ghosh
,
S.
,
Groeber
,
M.
, and
Bhattachrjee
,
A.
,
2009
, “
Grain Level Dwell Fatigue Crack Nucleation Model for Ti Alloys Using Crystal Plasticity Finite Element Analysis
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021003
.
You do not currently have access to this content.