This paper presents a methodology to define and verify the dynamic behavior of materials based on Taylor's test. A brass alloy with a microstructure composed mainly of two pure metals that have two different crystal structures, copper (face-centered cubic (fcc)) and zinc (hexagonal closed-packed (hcp)), is used in this study. A combined approach of different principal mechanisms controlled by the emergence and evolution of mobile dislocations as well as the long-range intersections between forest dislocations is, therefore, adopted to develop accurate definition for its flow stress. The constitutive relation is verified against experimental results conducted at low and high strain rates and temperatures using compression screw machine and split Hopkinson pressure bar (SHPB), respectively. The present model predicted results that compare well with experiments and was capable of simulating the low strain rate sensitivity that was observed during the several static and dynamic tests. The verified constitutive relations are further integrated and implemented in a commercial finite element (FE) code for three-dimensional (3D) Taylor's test simulations. A Taylor's test enables the definition of only one point on the stress–strain curve for a given strain rate using the initial and final geometry of the specimen after impact into a rigid surface. Thus, it is necessary to perform several tests with different geometries to define the complete material behavior under dynamic loadings. The advantage of using strain rate independent brass in this study is the possibility to rebuild the complete process of strain hardening during Taylor's tests by using the same specimen geometry. Experimental results using the Taylor test technique at a range of velocity impacts between 70 m/s and 200 m/s are utilized in this study to validate the constitutive model of predicting the dynamic behavior of brass at extreme conditions.

References

References
1.
Ishikawa
,
K.
, and
Tanimura
,
S.
,
1992
, “
Strain Rate Sensitivity of Flow Stress at Low Temperature in 304N Stainless Steel
,”
Int. J. Plast.
,
8
(
8
), pp.
947
958
.10.1016/0749-6419(92)90044-D
2.
Stout
,
M. G.
, and
Follansbee
,
P. S.
,
1986
, “
Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
108
(
4
), pp.
344
353
.10.1115/1.3225893
3.
Abed
,
F. H.
, and
Voyiadjis
,
G. Z.
,
2007
, “
Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures
,”
Int. J. Multiscale Comput. Eng.
,
5
(
3–4
), pp.
325
349
.10.1615/IntJMultCompEng.v5.i3-4.120
4.
Rusinek
,
A.
,
Rodriguez-Martinez
,
J.
,
Zaera
,
R.
,
Klepaczko
,
J. R.
,
Arias
,
A.
, and
Sauvelet
,
C.
,
2009
, “
Experimental and Numerical Study on the Perforation Process of Mild Steel Sheets Subjected to Perpendicular Impact by Hemispherical Projectiles
,”
Int. J. Impact Eng.
,
36
(
4
), pp.
565
587
.10.1016/j.ijimpeng.2008.09.004
5.
Lodygowski
,
T.
,
Rusinek
,
A.
,
Jankowiak
,
T.
, and
Sumelka
,
W.
,
2012
, “
Selected Topics of High Speed Machining Analysis
,”
Eng. Trans.
,
60
(
1
), pp.
69
96
.http://et.ippt.gov.pl/index.php/et/article/view/133
6.
Abed
,
F. H.
,
Makarem
,
F.
, and
Voyiadjis
,
G. Z.
,
2013
, “
Dynamic Localizations in HSLA-65 and DH-36 Structural Steel at Elevated Temperatures
,”
ASME J. Eng. Mater. Technol.
,
135
(
2
), p.
021007
.10.1115/1.4023775
7.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballisitics
,
The Hague, The Netherlands
, Apr. 19–21, pp.
541
547
.
8.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculation
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.10.1063/1.338024
9.
Follansbee
,
P.
, and
Kocks
,
U.
,
1988
, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,”
Acta Metall.
,
36
(
1
), pp.
81
93
.10.1016/0001-6160(88)90030-2
10.
Rusinek
,
A.
, and
Klepaczko
,
J.
,
2001
, “
Shear Testing of a Sheet Steel at Wide Range of Strain Rates and a Constitutive Relation With Strain-Rate and Temperature Dependence of the Flow Stress
,”
Int. J. Plast.
,
17
(
1
), pp.
87
115
.10.1016/S0749-6419(00)00020-6
11.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Effect of Dislocation Density Evolution on the Thermomechnical Response of Metals With Different Crystal Structures at Low and High Strain Rates and Temperatures
,”
Arch. Mech.
,
57
(
4
), pp.
299
343
.http://am.ippt.pan.pl/am/article/viewFile/v57p299/pdf
12.
Rordriguez-Martinez
,
J. A.
,
Rodriguez-Milan
,
M.
,
Rusinek
,
A.
, and
Arias
,
A.
,
2011
, “
A Dislocation Based Constitutive Description for Modeling the Behavior of FCC Metals Within Wide Ranges of Strain Rate and Temperature
,”
Mech. Mater.
,
43
(
12
), pp.
901
912
.10.1016/j.mechmat.2011.09.008
13.
Abed
,
F. H.
, and
Makarem
,
F.
,
2012
, “
Comparisons of Constitutive Models for Steel Over a Wide Range of Temperatures and Strain Rates
,”
ASME J. Eng. Mater. Technol.
,
134
(
2
), p.
021001
.10.1115/1.4006171
14.
Julien
,
R.
,
Jankowiak
,
T.
,
Rusinek
,
A.
, and
Woo
,
P.
, “
Taylor's Test Technique for Dynamic Characterization of Materials: Application to Brass
,”
Exp. Tech.
(in press).10.1111/ext.12070
15.
Taylor
,
G. I.
,
1948
, “
The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress I. Theoretical Considerations
,”
Proc. R. Soc. A
,
194
(
1038
), pp.
289
295
.10.1098/rspa.1948.0081
16.
Wilkins
,
M. L.
, and
Guinan
,
M. N.
,
1973
, “
Impact of Cylinders on a Rigid Boundary
,”
J. Appl. Phys.
,
44
(
3
), pp.
1200
1207
.10.1063/1.1662328
17.
Jones
,
S. E.
,
Drinkard
,
J. A.
,
Rule
,
W. K.
, and
Wilson
,
L. L.
,
1998
, “
An Elementary Theory for the Taylor Impact Test
,”
Int. J. Impact Eng.
,
21
(
1–2
), pp.
1
13
.10.1016/S0734-743X(97)00036-5
18.
Jankowiak
,
T.
,
Rusinek
,
A.
, and
Lodygowski
,
T.
,
2011
, “
Validation of the Klepaczko-Malinowski Model for Friction Correction and Recommendation on Split Hopkinson Pressure Bar
,”
Finite Elem. Anal. Des.
,
47
(
10
), pp.
1191
1208
.10.1016/j.finel.2011.05.006
19.
Nemat-Nasser
,
S.
, and
Li
,
Y.
,
1998
, “
Flow Stress of f.c.c. Polycrystals With Application to OFHC Cu
,”
Acta Mater.
,
46
(
2
), pp.
565
577
.10.1016/S1359-6454(97)00230-9
20.
Tanner
,
A.
,
McGinty
,
R.
, and
McDowell
,
D.
,
1999
, “
Modeling Temperature and Strain Rate History Effects in OFHC Copper
,”
Int. J. Plast.
,
15
(
6
), pp.
575
603
.10.1016/S0749-6419(98)00062-X
21.
Lennon
,
A. M.
, and
Ramesh
,
K. T.
,
2004
, “
The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures
,”
Int. J. Plast.
,
20
(
2
), pp.
269
290
.10.1016/S0749-6419(03)00037-8
22.
Abed
,
F. H.
, and
Voyiadjis
,
G. Z.
,
2007
, “
Thermodynamic Consistent Formulations of Viscoplastic Deformations in FCC Metals
,”
ASCE J. Eng. Mech.
,
133
(
1
), pp.
76
86
.10.1061/(ASCE)0733-9399(2007)133:1(76)
23.
Rusinek
,
A.
,
Rodriguez-Martinez
,
J.
, and
Arias
,
A.
,
2010
, “
A Thermo-Viscoplastic Constitutive Model for FCC Metals With Application to OFHC Copper
,”
Int. J. Mech. Sci.
,
52
(
2
), pp.
120
135
.10.1016/j.ijmecsci.2009.07.001
24.
Yoo
,
M. H.
,
Morris
,
J. R.
,
Ho
,
K. M.
, and
Agnew
,
S. R.
,
2002
, “
Nonbasal Deformation Modes of HCP Metals and Alloys: Role of Dislocation Source and Mobility
,”
Metall. Mater. Trans. A
,
33
(
3
), pp.
813
822
.10.1007/s11661-002-1013-5
25.
Kocks
,
U. F.
,
2001
, “
Realistic Constitutive Relations for Metal Plasticity
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
181
187
.10.1016/S0921-5093(01)01174-1
26.
Abed
,
F. H.
,
2010
, “
Constitutive Modeling of the Mechanical Behavior of High Strength Ferritic Steels for Static and Dynamic Applications
,”
Mech. Time-Depend. Mater.
,
14
(
4
), pp.
329
345
.10.1007/s11043-010-9112-y
27.
Abed
,
F. H.
,
Ranganathan
,
S.
, and
Serry
,
M.
,
2014
, “
Constitutive Modeling of Nitrogen-Alloyed Austenitic Stainless Steel at Low and High Strain Rates and Temperatures
,”
Mech. Mater.
,
77
, pp.
142
157
.10.1016/j.mechmat.2014.07.007
28.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2006
, “
Implicit Algorithm for Finite Deformation Hypoelasto-Viscoplasticity in FCC Metals
,”
Int. J. Numer. Methods Eng.
,
67
(7), pp.
933
955
.10.1002/nme.1655
29.
Abed
,
F. H.
,
2005
, “
Physically Based Multiscale-Viscoplastic Model for Metals and Steel Alloys: Theory and Computation
,” Doctoral dissertation, Louisiana State University, Baton Rouge, LA.
30.
Rusinek
,
A.
, and
Klepaczko
,
J. R.
,
2009
, “
Plastic Work and Heat Generated During Plastic Deformation of a High Strength Steel
,”
Mater. Des.
,
30
(1), pp.
35
48
.10.1016/j.matdes.2008.04.048
31.
Makarem
,
F. S.
, and
Abed
,
F. H.
,
2013
, “
Nonlinear Finite Element Modeling of Dynamic Localizations in High Strength Steel Columns Under Impact
,”
Int. J. Impact Eng.
,
52
, pp.
47
61
.10.1016/j.ijimpeng.2012.10.006
32.
Simula
,
2012
, “
abaqus, Reference Manual
,”
Dassault System, Johnston
,
RI
.
33.
Roux
,
M. R.
, and
Moreaud
,
M. J.
,
1991
, “
Pertinence de l'essaid'impact du cylindre de Taylor pour laprévision du comportement balistique des aciers à blindage
,”
J. Phys. IV
,
1
(
C3
), pp.
271
276
.10.1051/jp4:1991338
34.
Zhong
,
W. Z.
,
Rusinek
,
A.
,
Jankowiak
,
T.
,
Abed
,
F. H.
,
Bernier
,
R.
, and
Sutter
,
G.
,
2015
, “
Influence of Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System
,”
Tribol. Int.
,
90
, pp.
1
14
.10.1016/j.triboint.2015.04.002
You do not currently have access to this content.