The fatigue properties of two variants of AISI 1018 steel samples were measured in a series of 33 experiments using new kinds of magnetic diagnostics. An MTS-810 servohydraulic test machine applied sinusoidal fully reversed (R = −1) loads under strain (Є) control in the range of 0.0008 (Є) 0.0020. In 28 experiments, the number of cycles to fatigue failure Nf varied between 36,000 < Nf < 3,661,000. By contrast, in five runs extending over 107 cycles, the specimens showed no detectable signs of weakening or damage. The corresponding “S-N” or classical Wöhler plots indicated that the transitions from fatigue failure to nominally infinite life (i.e., the fatigue limit) occurred at strains of about Є = 0.0009 and Є = 0.0010, respectively, for the two types of steel. Every loading cycle of each test was instrumented to record continual values of stress and strain. Flux gate magnetometers measured the variations of the piezomagnetic fields near the specimens. A 1000-turn coil surrounding the test pieces detected the piezo-Barkhausen pulses generated by abrupt rearrangements of their internal ferromagnetic domain structures. Analyses of the magnetic data yielded four independent indices each of which located the fatigue limits in complete agreement with the values derived from the Wöhler curves.

References

References
1.
Erber
,
T.
,
Guralnick
,
S. A.
,
Segre
,
C. U.
, and
Tong
,
W.
,
2012
, “
Correlation Between the Piezo-Barkhausen Effect and the Fatigue Limit of Steel
,”
J. Phys. D: Appl. Phys.
,
45
(
46
), p.
465002
.10.1088/0022-3727/45/46/465002
2.
Guralnick
,
S. A.
,
Bao
,
S.
, and
Erber
,
T.
,
2008
, “
Piezomagnetism and Fatigue: II
,”
J. Phys. D: Appl. Phys.
,
41
(
11
), p.
115006
.10.1088/0022-3727/41/11/115006
3.
Tong
,
W.
,
2012
, “
Fatigue and Barkhausen Effect
,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.
4.
Nunez-Moreno
,
F. A.
,
2014
, “
Piezo-Barkhausen Pulse Signal Analyses and Determination of the Fatigue Life of AISI-1018 Steel Near the Endurance Limit
,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.
5.
Zhang
,
Y.
, and
Atherton
,
D. L.
,
1995
, “
Levels of Demagnetized States
,”
IEEE Trans. Magn.
,
31
(
3
), pp.
2233
2240
.10.1109/20.376239
6.
Erber
,
T.
,
Guralnick
,
S. A.
,
Desai
,
R. D.
, and
Kwok
,
W.
,
1997
, “
Piezomagnetism and Fatigue
,”
J. Phys. D: Appl. Phys.
,
30
(
20
), pp.
2818
2836
.10.1088/0022-3727/30/20/008
7.
Tebble
,
R. S.
,
Skidmore
,
R. C.
, and
Corner
,
W. D.
,
1950
, “
The Barkhausen Effect
,”
Proc. Phys. Soc. A
,
63
, pp.
739
761
.10.1088/0370-1298/63/7/307
8.
Voigt
,
W.
,
1902
, “
Ueber Pyro- und Piezomagnetismus der Krystalle
,”
Ann. Phys.
,
314
(
9
), pp.
94
114
.10.1002/andp.19023140905
9.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
10.
van der Pol
,
B.
,
1921
, “
Discontinuities in the Magnetization
,”
Proc. R. Acad. Amsterdam
,
23
, pp.
637
643
.
11.
Morrow
,
J. D.
,
1965
,
Internal Friction, Damping, and Cyclic Plasticity
,
ASTM
,
West Conshohocken, PA
.
12.
Haigh
,
B. P.
,
1928
, “
Hysteresis in Relation to Cohesion and Fatigue
,”
Trans. Faraday Soc.
,
24
, pp.
125
137
.10.1039/tf9282400125
13.
Miner
,
M.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
67
, pp.
A159
A164
.
14.
Zener
,
C.
,
1948
,
Elasticity and Anelasticity of Metals
,
University of Chicago Press
,
Chicago, IL
.
15.
Feltner
,
G. E.
, and
Morrow
,
J. D.
,
1961
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
ASME J. Basic Eng.
,
83
(
1
), pp.
15
22
.10.1115/1.3658884
16.
Doudard
,
C.
,
Calloch
,
S.
,
Hild
,
F.
,
Cugy
,
P.
, and
Galtier
,
A.
,
2004
, “
Identification of the Scatter in High Cycle Fatigue From Temperature Measurements
,”
C. R. Méc.
,
332
(
10
), pp.
795
802
.10.1016/j.crme.2004.06.002
17.
Lazreg
,
S.
, and
Hubert
,
O.
,
2010
, “
Detection of Fatigue Limit Thanks to Piezomagnetic Measurements
,”
IEEE Trans. Magn.
,
46
(
2
), pp.
556
559
.10.1109/TMAG.2009.2033126
18.
Orowan
,
E.
,
1939
, “
Theory of the Fatigue of Metals
,”
Proc. R. Soc. London, Ser. A
,
171
(
944
), pp.
79
106
.10.1098/rspa.1939.0055
19.
Guralnick
,
S. A.
,
1975
, “
An Incremental Collapse Model for Metal Fatigue
,” International Association for Bridge and Structural Engineering, Zurich, Switzerland, Technical Report No. 35-II.
20.
Bridgman
,
P. W.
,
1950
, “
The Thermodynamics of Plastic Deformation and Generalized Entropy
,”
Rev. Mod. Phys.
,
22
(
1
), pp.
56
63
.10.1103/RevModPhys.22.56
21.
Luck
,
D. E. C.
,
1932
, “
A Study of Magnetic Discontinuities Produced by Mechanical Deformation
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
You do not currently have access to this content.