Within the thermodynamic framework with internal variables by Rice (1971, “Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19(6), pp. 433–455), Yang et al. (2014, “Time-Independent Plasticity Related to Critical Point of Free Energy Function and Functional,” ASME J. Eng. Mater. Technol., 136(2), p. 021001) established a model of time-independent plasticity of three states. In this model, equilibrium states are the states with vanishing thermodynamic forces conjugate to the internal variables, and correspond to critical points of the free energy or its complementary energy functions. Then, the conjugate forces play a role of yield functions and further lead to the consistency conditions. The model is further elaborated in this paper and extended to nonisothermal processes. It is shown that the incremental stress–strain relations are fully determined by the local curvature of the free energy or its complementary energy functions at the critical points, described by the Hessian matrices. It is further shown that the extended model can be well reformulated based on the intrinsic time in the sense of Valanis (1971, “A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory,” Arch. Mech., 23(4), pp. 517–533; 1975, “On the Foundations of the Endochronic Theory of Viscoplasticity,” Arch. Mech., 27(5–6), pp. 857–868), by taking the intrinsic time as the accumulated length of the variation of the internal variables during inelastic processes. It is revealed within this framework that the stability condition of equilibrium directly leads to Drucker (1951, “A More Fundamental Approach to Stress–Strain Relations,” First U.S. National Congress of Applied Mechanics, pp. 487–497) and Il'yushin (1961, “On a Postulate of Plasticity,” J. Appl. Math. Mech., 25(2), pp. 746–750) inequalities, by introducing the consistency condition into the work of Hill and Rice (1973, “Elastic Potentials and the Structure of Inelastic Constitutive Laws,” SIAM J. Appl. Math., 25(3), pp. 448–461). Generalized inequalities of Drucker (1951, “A More Fundamental Approach to Stress–Strain Relations,” First U.S. National Congress of Applied Mechanics, pp. 487–497) and Il'yushin (1961, “On a Postulate of Plasticity,” J. Appl. Math. Mech., 25(2), pp. 746–750) for nonisothermal processes are established straightforwardly based on the connection.

References

References
1.
Drucker
,
D. C.
,
1951
, “
A More Fundamental Approach to Stress–Strain Relations
,”
First U.S. National Congress of Applied Mechanics
, Chicago, June 11–16, pp.
487
497
.
2.
Il'yushin
,
A. A.
,
1961
, “
On a Postulate of Plasticity
,”
J. Appl. Math. Mech.
,
25
(
2
), pp.
746
750
.10.1016/0021-8928(61)90044-2
3.
Valanis
,
K. C.
, and
Peters
,
J. F.
,
1996
, “
Ill-Posedness of the Initial and Boundary Value Problems in Non-Associative Plasticity
,”
Acta Mech.
,
114
(
1–4
), pp.
1
25
.10.1007/BF01170392
4.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2006
, “
Review of Drucker's Postulate and the Issue of Plastic Stability in Metal Forming
,”
Int. J. Plast.
,
22
(
3
), pp.
391
433
.10.1016/j.ijplas.2005.03.002
5.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1975
, “
Conditions for Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
.10.1016/0022-5096(75)90001-0
6.
Koiter
,
W. T.
,
1953
, “
Stress–Strain Relation, Uniqueness and Variational Theorems for Elastic–Plastic Materials With a Singular Yield Surface
,”
Q. Appl. Math.
,
11
, pp.
350
354
.
7.
Ottosen
,
N. S.
, and
Ristinmaa
,
M.
,
1996
, “
Corners in Plasticity—Koiter's Theory Revisited
,”
Int. J. Solids Struct.
,
33
(
25
), pp.
3697
3721
.10.1016/0020-7683(95)00207-3
8.
Hashiguchi
,
K.
,
1975
, “
Generalized Plastic Flow Rule
,”
Int. J. Plast.
,
21
(
2
), pp.
321
351
.10.1016/j.ijplas.2003.12.003
9.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(
6
), pp.
433
455
.10.1016/0022-5096(71)90010-X
10.
Rice
,
J. R.
,
1975
, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
,
Cambridge, MA
, pp.
23
79
.
11.
Collins
,
I. F.
, and
Houlsby
,
G. T.
,
1997
, “
Application of Thermomechanical Principles to the Modelling of Geotechnical Materials
,”
Proc. R. Soc. London A
,
453
(
1964
), pp.
1975
2001
.10.1098/rspa.1997.0107
12.
Maugin
,
G. A.
,
1999
,
The Thermodynamics of Nonlinear Irreversible Behaviors
,
World Scientific
,
Singapore
.
13.
Petryk
,
H.
,
2005
, “
Thermodynamic Conditions for Stability in Materials With Rate-Independent Dissipation
,”
Phil. Trans. R. Soc. London A
,
363
(
1836
), pp.
2479
2515
.10.1098/rsta.2005.1584
14.
Edelen
,
D. G. B.
,
1993
,
The College Station Lectures on Thermodynamics
,
Texas A&M University
,
College Station, TX
.
15.
Yang
,
Q.
,
Liu
,
Y. R.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2014
, “
Time-Independent Plasticity Related to Critical Point of Free Energy Function and Functional
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
021001
.10.1115/1.4026232
16.
Hill
,
R.
, and
Rice
,
J. R.
,
1973
, “
Elastic Potentials and the Structure of Inelastic Constitutive Laws
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
448
461
.10.1137/0125045
17.
Lucchesi
,
M.
, and
Silhavy
,
M.
,
1991
, “
Il'yushin's Conditions in Non-Isothermal Plasticity
,”
Arch. Ration. Mech. Anal.
,
113
(
2
), pp.
121
163
.10.1007/BF00380414
18.
Huang
,
Z. P.
,
1991
, “
A Thermomechanical Postulate in Finite Plasticity
,”
Acta Sci. Nat. Univ. Pekineneis
,
27
, pp.
317
322
.
19.
Valanis
,
K. C.
,
1971
, “
A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory
,”
Arch. Mech.
,
23
(
4
), pp.
517
533
.
20.
Valanis
,
K. C.
,
1975
, “
On the Foundations of the Endochronic Theory of Viscoplasticity
,”
Arch. Mech.
,
27
(
5–6
), pp.
857
868
.
21.
Kestin
,
J.
, and
Rice
,
J. R.
,
1970
, “
Paradoxes in the Application of Thermodynamics to Strained Solids
,”
A Critical Review of Thermodynamics
,
E. B.
Stuart
,
B.
Gal-Or
, and
A. J.
Brainard
, eds.,
Mono Book
,
Baltimore
, pp.
275
298
.
22.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
(
2
), pp.
79
95
.10.1016/0022-5096(67)90018-X
23.
Hill
,
R.
, and
Rice
,
J. R.
,
1972
, “
Constitutive Analysis of Elastic–Plastic Crystals at Arbitrary Strain
,”
J. Mech. Phys. Solids
,
20
, pp.
401
413
.10.1016/0022-5096(72)90017-8
24.
Viesca
,
R. C.
,
Templeton
,
E. L.
, and
Rice
,
J. R.
,
2008
, “
Off-Fault Plasticity and Earthquake Rupture Dynamics: 2. Effects of Fluid Saturation
,”
J. Geophys. Res.
,
113
(
B9
), p.
307
.10.1029/2007JB005530
25.
Yang
,
Q.
,
Tham
,
L. G.
, and
Swoboda
,
G.
,
2005
, “
Normality Structures With Homogeneous Kinetic Rate Laws
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
322
329
.10.1115/1.1867991
26.
Edelen
,
D. G. B.
,
1972
, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
,
10
(
6
), pp.
481
490
.10.1016/0020-7225(72)90091-2
27.
Edelen
,
D. G. B.
,
1973
, “
Asymptotic Stability, Onsager Fluxes and Reaction Kinetics
,”
Int. J. Eng. Sci.
,
11
(
8
), pp.
819
839
.10.1016/0020-7225(73)90032-3
28.
Ziegler
,
H.
,
1977
,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
29.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2004
, “
On Thermomechanical Restrictions of Continua
,”
Proc. R. Soc. London A
,
460
(
2042
), pp.
631
651
.10.1098/rspa.2002.1111
30.
Fischer
,
F. D.
, and
Svoboda
,
J.
,
2007
, “
A Note on the Principle of Maximum Dissipation Rate
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
923
926
.10.1115/1.2722304
31.
Yang
,
Q.
,
Bao
,
J. Q.
, and
Liu
,
Y. R.
,
2009
, “
Asymptotic Stability in Constrained Configuration Space for Solids
,”
J. Non-Equilib. Thermodyn.
,
34
(
2
), pp.
155
170
.10.1515/JNETDY.2009.009
32.
Yang
,
Q.
,
Liu
,
Y. R.
, and
Bao
,
J. Q.
,
2010
, “
Hamilton's Principle of Entropy Production for Creep and Relaxation Processes
,”
ASME J. Eng. Mater. Technol.
,
132
(
1
), p.
011018
.10.1115/1.4000302
33.
Nguyen
,
Q. S.
,
2000
,
Stability and Nonlinear Solid Mechanics
,
Wiley
,
London
.
34.
Yang
,
Q.
,
Wang
,
R. K.
, and
Xue
,
L. J.
,
2007
, “
Normality Structures With Thermodynamic Equilibrium Points
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
965
971
.10.1115/1.2722772
35.
Yang
,
Q.
,
Xue
,
L. J.
, and
Liu
,
Y. R.
,
2009
, “
Thermodynamics of Infinitesimally Constrained Equilibrium States
,”
ASME J. Appl. Mech.
,
76
(
1
), p.
014502
.10.1115/1.2998484
36.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A Comment on Drucker's Postulate in the Theory of Plasticity
,”
Acta Mech.
,
1
(
4
), pp.
334
338
.10.1007/BF01179432
37.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2002
,
Classical Mechanics
,
3rd ed.
,
Addison Wesley
,
San Francisco
.
38.
Yang
,
Q.
,
Xue
,
L. J.
, and
Liu
,
Y. R.
,
2008
, “
Multiscale Thermodynamic Basis of Plastic Potential Theory
,”
ASME J. Eng. Mater. Technol.
,
130
(
4
), p.
044501
.10.1115/1.2969249
You do not currently have access to this content.