The temperature and concentration play an important role on rheological parameters of the gel. In this work, an experimental investigation of thermorheological properties of aqueous gel Carbopol Ultrez 20 for various concentrations and temperatures has been presented. Both controlled stress ramps and controlled stress oscillatory sweeps were performed for obtaining the rheological data to find out the effect of temperature and concentration. The hysteresis or thixotropic seemed to have negligible effect. Yield stress, consistency factor, and power law index were found to vary with temperature as well as concentration. With gel concentration, the elastic effect was found to increase whereas viscous dissipation effect was found to decrease. Further, the change in elastic properties was insignificant with temperature in higher frequency range of oscillatory stress sweeps.

References

References
1.
Barnes
,
H. A.
,
1999
, “
The Yield Stress: A Review-Everything Flows?
J. Non-Newtonian Fluid Mech.
,
81
(
1–2
), pp.
133
178
.10.1016/S0377-0257(98)00094-9
2.
Balmforth
,
N. J.
,
Frigaard
,
I. A.
, and
Ovarlez
,
G.
,
2014
, “
Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
46
, pp.
121
146
.10.1146/annurev-fluid-010313-141424
3.
Moller
,
P.
,
Fall
,
A.
,
Chikkadi
,
V.
,
Derks
,
D.
, and
Bonn
,
D.
,
2009
, “
An Attempt to Categorize Yield Stress Fluid Behavior
,”
Philos. Trans. R. Soc., A
,
367
(
1909
), pp.
5139
5155
.10.1098/rsta.2009.0194
4.
Putz
,
A. M. V.
, and
Burghelea
,
T. I.
,
2009
, “
The Solid-Fluid Transition in a Yield Stress Shear Thinning Physical Gel
,”
Rheol. Acta
,
48
(
6
), pp.
673
689
.10.1007/s00397-009-0365-9
5.
Tamburic
,
S.
, and
Craig
,
D. Q. M.
,
1995
, “
An Investigation Into the Rheological, Dielectric and Mucoadhesive Properties of Polyacrylic Acid Gel Systems
,”
J. Controlled Release
,
32
(1–2), pp.
59
68
.
6.
Islam
,
M. T.
,
Hornedo
,
N. R.
,
Ciotti
,
S.
, and
Ackermann
,
C.
,
2004
, “
Rheological Characterization of Topical Carbomer Gels Neutralized to Different pH
,”
Pharma. Res.
,
21
(
7
), pp.
1192
1199
.10.1023/B:PHAM.0000033006.11619.07
7.
Todd
,
R. H.
, and
Daniel
,
S. K.
,
2008
, “
Hydro Gels in Drug Delivery: Progress and Challenges
,”
Polymer
,
49
(
8
), pp.
1993
2007
.10.1016/j.polymer.2008.01.027
8.
Weber
,
E.
,
Gonzalez
,
M. M.
, and
Burghelea
,
T. I.
,
2012
, “
Thermorheological Properties of a Carbopol Gel Under Shear
,”
J. Non-Newtonian Fluid Mech.
,
183–184
, pp.
14
24
.10.1016/j.jnnfm.2012.07.005
9.
Holenberg
,
Yu.
,
Lavrenteva
,
O. M.
,
Liberzon
,
A.
,
Shavit
,
U.
, and
Nir
,
A.
,
2013
, “
PTV and PIV Study of the Motion of Viscous Drops in Yield Stress Material
,”
J. Non-Newtonian Fluid Mech.
,
193
, pp.
129
143
.10.1016/j.jnnfm.2012.09.013
10.
Lee
,
D.
,
Gutowski
,
I. A.
,
Bailey
,
A. E.
,
Rubatat
,
L.
,
de Bruyn
,
J. R.
, and
Frisken
,
B. R.
,
2011
, “
Investigating the Microstructure of a Yield-Stress Fluid by Light Scattering
,”
Phys. Rev. E
,
83
(
3
), p.
031401
.10.1103/PhysRevE.83.031401
11.
Peixinho
,
J.
,
Desaurby
,
C.
, and
Lebouche
,
M.
,
2008
, “
Heat Transfer of a Non-Newtonian (Carbopol Aqueous Solution) in Transition Pipe Flow
,”
Int. J. Heat Mass Transfer
,
51
(1–2), pp.
198
209
.10.1016/j.ijheatmasstransfer.2007.04.012
12.
Kebiche
,
Z.
,
Castelain
,
C.
, and
Burghelea
,
T.
,
2014
, “
Experimental Investigation of the Rayleigh-Benard Convection in a Yield Stress Fluid
,”
J. Non-Newtonian Fluid Mech.
,
203
, pp.
9
23
.10.1016/j.jnnfm.2013.10.005
13.
Darbouli
,
M.
,
Melivier
,
C.
,
Piau
,
J. M.
,
Magnin
,
A.
, and
Abdelali
,
A.
,
2013
, “
Rayleigh Benard Convection for Viscoplastic Fluid
,”
Phys. Fluids
,
25
(2), p.
023101
.10.1063/1.4790521
14.
Roberts
,
G. P.
, and
Barnes
,
H. A.
,
2001
, “
New Measurements of the Flow Curves for Carbopol Dispersions Without Slip Artifacts
,”
Rheol. Acta
,
40
(
5
), pp.
499
503
.10.1007/s003970100178
15.
Spangenberg
,
J.
,
Roussel
,
N.
,
Hattel
,
J. H.
,
Stang
,
H.
,
Skocek
,
J.
, and
Geiker
,
M. R.
,
2012
, “
Flow Induced Particle Migration in Fresh Concrete: Theoretical Frame, Numerical Simulations and Experimental Results on Model Fluids
,”
Cem. Concr. Res.
,
42
(
4
), pp.
633
641
.10.1016/j.cemconres.2012.01.007
16.
Minussi
,
R. B.
, and
Maciel
,
G. F.
,
2012
, “
Numerical Experimental Comparison of Dam Break Flows With Non-Newtonian Fluids
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
2
), pp.
167
178
.10.1590/S1678-58782012000200008
17.
Huen
,
C. K.
,
Frigaard
,
I. A.
, and
Martinez
,
D. M.
,
2007
, “
Experimental Studies of Multi-Layer Flows Using a Visco-Plastic Lubricant
,”
J. Non-Newtonian Fluid Mech.
,
142
(
1–3
), pp.
150
161
.10.1016/j.jnnfm.2006.08.001
18.
Ketz
,
R. J.
,
Prud'homme
,
R. K.
, and
Graessley
,
W. W.
,
1988
, “
Rheology of Concentrated Microgel Solutions
,”
Rheol. Acta
,
27
(
5
), pp.
531
539
.10.1007/BF01329353
19.
Oppong
,
F. K.
,
Rubatat
,
L.
,
Frisken
,
B. J.
,
Bailey
,
A. E.
, and
de Bruyn
,
J. R.
,
2006
, “
Microrheology and Structure of a Yield-Stress Polymer Gel
,”
Phys. Rev. E
,
73
(
4
), p.
041405
.10.1103/PhysRevE.73.041405
20.
Gutowski
,
I. A.
,
Lee
,
D.
,
de Bruyn
,
J. R.
, and
Frisken
,
B. J.
,
2012
, “
Scaling and Mesostructure of Carbopol Dispersions
,”
Rheol. Acta
,
51
(
5
), pp.
441
450
.10.1007/s00397-011-0614-6
21.
Bardet
,
L.
, and
Alain
,
M.
,
1975
, “
Gelation of a High Polymer of Acrylic Acid Used in Pharmacy
,”
Ann. Pharma. Francaises
,
33
(
12
), pp.
651
661
.
You do not currently have access to this content.