The aim of this paper is to contribute to the prediction of the failure of materials (ductile and brittle) with a single criterion (rule) not violating the assumptions of continuum mechanics. In this work, the failure behavior of isotropic materials is connected with the ability of a material to store elastic strain energy from the very start of loading until its fracture. This elastic strain energy is known that is separated in a distortional and a dilatational part. So, when one of these quantities takes a critical value, then the material fails either by slip or by cleavage. The behavior of a material is described with regard to the secant elastic moduli depending on both unit volume expansion Θ and equivalent strain ɛeq. This dependence enlightens, in physical terms, the different reaction of materials in normal and shear stresses. T-criterion is applied for the prediction of failure in a series of experiments that took place to an aluminum alloy (Al-5083) and to PMMA (Plexiglas). A single criterion was used for two totally different materials and the predictions are quite satisfactory. This work is a step toward the direction of using one criterion in order to explain and predict failure in materials independently of the plastic strain that developed before fracture.

References

References
1.
Bai
,
Y.-L.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.10.1007/s10704-009-9422-8
2.
Haltom
,
S. S.
,
Kyriakides
,
S.
, and
Ravi-Chandar
,
K.
,
2013
, “
Ductile Failure Under Combined Shear and Tension
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1507
1522
.10.1016/j.ijsolstr.2012.12.009
3.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear-Experiments
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1768
1786
.10.1016/j.ijsolstr.2006.09.031
4.
Mohr
,
D.
, and
Oswald
,
M.
,
2008
, “
A New Experimental Technique for Multiaxial Testing of Advanced High Strength Steels
,”
Exp. Mech.
,
48
(
1
), pp.
65
77
.10.1007/s11340-007-9053-9
5.
Khan
,
A. S.
, and
Liu
,
H.
,
2012
, “
A New Approach for Ductile Fracture Prediction on Al-2024-T351 Alloy
,”
Int. J. Plast.
,
35
(8), pp.
1
12
.10.1016/j.ijplas.2012.01.003
6.
Christensen
,
R. M.
,
2004
, “
A Two-Property Yield, Failure (Fracture) Criterion for Homogeneous, Isotropic Materials
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
45
52
.10.1115/1.1631024
7.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.10.1115/1.3601204
8.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
9.
Gurson
,
A. L.
,
1975
, “
Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Inter-Action
,” Ph.D. thesis, Brown University, Providence, RI.
10.
LeRoy
,
G.
,
Embury
,
J.
,
Edwards
,
G.
, and
Ashby
,
M. F.
,
1981
, “
A Model of Ductile Fracture Based on the Nucleation and Growth of Voids
,”
Acta Metall.
,
29
(
8
), pp.
1509
1522
.10.1016/0001-6160(81)90185-1
11.
Atkins
,
A. G.
,
1996
, “
Fracture in Forming
,”
J. Mater. Process. Technol.
,
56
(
1–4
), pp.
609
618
.10.1016/0924-0136(95)01875-1
12.
Maxwell
,
C.
,
1937
, “
The Origins of Clerk Maxwell's Electric Ideas, as Described in Familiar Letters to W. Thomson
,”
Math. Proc. Cambridge Phil. Soc.
,
32
(
5
), pp.
695
748
.10.1017/S0305004100019472
13.
Hencky
,
H.
,
1924
, “
Zur Theorie Plastischer Deformationen und der Hierdurch im Material Hervorgerufenen Nachspannunge
,”
Z. Angew. Math. Mech.
,
4
(
4
), pp.
323
334
.10.1002/zamm.19240040405
14.
Huber
,
M. T.
,
1904
, “
Die Spezifische Formanderungsarbeit als mass der Anstrengungeines Materials
,”
Czasopismo Tech.
,
22
, pp.
81
92
.
15.
Li
,
Q. M.
,
2001
, “
Strain Energy Density Failure Criterion
,”
Int. J. Solids Struct.
,
38
(
38–39
), pp.
6997
7013
.10.1016/S0020-7683(01)00005-1
16.
Theocaris
,
P. S.
, and
Andrianopoulos
,
N. P.
,
1982
, “
The Mises Elastic–Plastic Boundary as the Core Region in Fracture Criteria
,”
Eng. Fract. Mech.
,
16
(
3
), pp.
425
432
.10.1016/0013-7944(82)90120-5
17.
Theocaris
,
P. S.
, and
Andrianopoulos
,
N. P.
,
1982
, “
The T-Criterion Applied to Ductile Fracture
,”
Int. J. Fract.
,
20
(
4
), pp.
125
130
.10.1007/BF01130617
18.
Andrianopoulos
,
N. P.
,
1993
, “
Metal Forming Limit Diagrams According to the T-Criterion
,”
J. Mater. Process. Technol.
,
39
(
1–2
), pp.
213
226
.10.1016/0924-0136(93)90019-3
19.
Andrianopoulos
,
N. P.
, and
Boulougouris
,
V. C.
,
1994
, “
Failure by Fracture or Yielding in Strain Hardening Materials According to the T-Criterion
,”
Eng. Fract. Mech.
,
47
(
5
), pp.
639
351
.10.1016/0013-7944(94)90155-4
20.
von Mises
,
R.
,
1913
, “
Die Mechanik der Festen Korper in Plastisch Deformierten Zustand
,”
Nachr. Gottingen Akad., Wiss. Math. Phys.
,
1
, pp.
582
592
, available at: http://neo-classical-physics.info/uploads/3/0/6/5/3065888/von_mises_-_plastic_deformation.pdf
21.
Andrianopoulos
,
N. P.
, and
Manolopoulos
,
V. M.
,
2012
, “
Can Coulomb Criterion be Generalized in Case of Ductile Materials? An Application to Bridgman Experiments
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
241
248
.10.1016/j.ijmecsci.2011.11.003
22.
Nadai
,
A.
,
1963
,
Theory of Flow and Fracture of Solids
,
McGraw-Hill
,
New York
.
23.
Cleveland
,
R. M.
, and
Ghosh
,
A. K.
,
2002
, “
Inelastic Effects on Springback in Metals
,”
Int. J. Plast.
,
18
(
5–6
), pp.
769
785
.10.1016/S0749-6419(01)00054-7
24.
Kim
,
H.
,
Kim
,
C.
,
Barlat
,
F.
,
Pavlina
,
E.
, and
Lee
,
M. G.
,
2013
, “
Nonlinear Elastic Behaviors of Low and High Strength Steels in Unloading and Reloading
,”
Mater. Sci. Eng. A
,
562
, pp.
161
171
.10.1016/j.msea.2012.11.020
25.
Manolopoulos
,
V. M.
,
2009
, “
Contribution to the Study of Failure Criteria on Non Linear Elastic Materials
,” Ph.D. dissertation, National Technical University of Athens, Athens, Greece (in Greek).
26.
Bridgman
,
P. W.
,
1952
,
Studies in Large Plastic Flow and Fracture
,
1st ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.