A previously developed energy based high cycle fatigue (HCF) life assessment framework is modified to predict the low cycle fatigue (LCF) life of aluminum 6061-T6. The fatigue life assessment model of this modified framework is formulated in a closed form expression by incorporating the Ramberg–Osgood constitutive relationship. The modified framework is composed of the following entities: (1) assessment of the average strain energy density and the average plastic strain range developed in aluminum 6061-T6 during a fatigue test conducting at the ideal frequency for optimum energy calculation, and (2) determination of the Ramberg–Osgood cyclic parameters for aluminum 6061-T6 from the average strain energy density and the average plastic strain range. By this framework, the applied stress range is related to the fatigue life by a power law whose parameters are functions of the fatigue toughness and the cyclic parameters. The predicted fatigue lives are found to be in a good agreement with the experimental data.

References

References
1.
Jasper
,
T.
,
1923
, “
The Value of Energy Relation in the Testing of Ferrous Metals at Varying Ranges of Stress and at Intermediate and High Temperatures
,”
Philos. Mag. J. Sci.
,
46
(274), pp.
609
627
.10.1080/14786442308634287
2.
Enomoto
,
N.
,
1955
, “
On Fatigue Test Under Progressive Stress
,”
Am. Soc. Test. Mater.
,
55
, pp.
903
917
.
3.
Feltner
,
C. E.
, and
Morrow
,
J. D.
,
2005
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
ASME J. Fluids Eng.
,
83
(
1
), pp.
15
22
.10.1115/1.3658884
4.
Stowell
,
E. Z.
,
1966
, “
A Study of the Energy Criterion for Fatigue
,”
Nucl. Eng. Des.
,
3
(
1
), pp.
32
40
.10.1016/0029-5493(66)90146-4
5.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
,
Cross
,
C. J.
, and
Calcaterra
,
J.
,
2007
, “
Development of an Improved High Cycle Fatigue Criterion
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
162
169
.10.1115/1.2360599
6.
Scott-Emuakpor
,
O. E.
,
Shen
,
H.
,
George
,
T.
, and
Cross
,
C.
,
2008
, “
An Energy-Based Uniaxial Fatigue Life Prediction Method for Commonly Used Gas Turbine Engine Materials
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p.
062504
.10.1115/1.2943152
7.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Cross
,
C.
, and
Shen
,
M.-H. H.
,
2010
, “
Hysteresis-Loop Representation for Strain Energy Calculation and Fatigue Assessment
,”
J. Strain Anal.
,
45
(
4
), pp.
275
282
.10.1243/03093247JSA602
8.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Torsional-Shear Fatigue Lifing Method
,”
Exp. Mech.
,
52
(
7
), pp.
705
715
.10.1007/s11340-011-9536-6
9.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Charles
,
C.
,
2012
, “
An Energy-Based Axial Isothermal-Mechanical Fatigue Lifing Procedure
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
024502
.10.1115/1.4004394
10.
Ozaltun
,
H.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2011
, “
An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components
,”
Exp. Mech.
,
51
(
5
), pp.
707
718
.10.1007/s11340-010-9365-z
11.
Holycross
,
C. M.
,
Wertz
,
J. N.
,
Letcher
,
T.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O. E.
, and
George
,
T. J.
,
2012
, “
Damage Parameter Assessment for Energy Based Fatigue Life Prediction Methods
,”
ASME
Paper No. GT2012-68919.10.1115/GT2012-68919
12.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress–Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Note No. 902.
13.
Hertzberg
,
R. W.
,
1989
,
Deformation and Fracture Mechanics of Engineering Materials
,
3rd ed.
,
Wiley
, Toronto,
Canada
.
14.
ASTM,
2013
, “Standard Test Methods for Tension Testing of Metallic Materials,” American Society for Testing and Materials International, West Conshohocken, PA,
ASTM
Standard No. E8/E8M-13a.10.1520/E0008_E0008M
15.
ASTM,
2012
, “Standard Test Method for Strain-Controlled Fatigue Testing,” American Society for Testing and Materials International, West Conshohocken, PA,
ASTM
Standard No. E606/E606M-12.10.1520/E0606_E0606M-12
16.
Shen
,
M.-H. H.
, and
Akanda
,
S.
,
2014
, “
An Energy-Based Framework to Determine the Fatigue Strength and Fatigue Ductility Parameters for LCF/HCF Life Assessment of Turbine Materials
,”
ASME
Paper No. GT2014-26149. 10.1115/GT2014-26149
17.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Cross
,
C.
, and
Shen
,
M.-H. H.
,
2010
, “
Multi-Axial Fatigue-Life Prediction Via a Strain-Energy Method
,”
AIAA J.
,
48
(
1
), pp.
63
72
.10.2514/1.39296
18.
Tarar
,
W.
,
Scott-Emuakpor
,
O.
, and
Shen
,
M.-H. H.
,
2010
, “
Development of New Finite Elements for Fatigue Life Prediction in Structural Components
,”
Struct. Eng. Mech.
,
35
(
6
), pp.
659
676
.10.12989/sem.2010.35.6.659
19.
Tarar
,
W.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2010
, “
A New Finite Element Procedure for Fatigue Life Prediction of Al6061 Plates Under Multiaxial Loadings
,”
Struct. Eng. Mech.
,
35
(
5
), pp.
571
592
.10.12989/sem.2010.35.5.571
You do not currently have access to this content.