Conventional fusion joining methods, such as resistance spot welding (RSW), have been demonstrated to be ineffective for magnesium alloys. However, self-pierce riveting (SPR) has recently been shown as an attractive joining technique for lightweight metals, including magnesium alloys. While the SPR joining process has been experimentally established on magnesium alloys through trial and error, this joining process is not fully developed. As such, in this work, we explore simulation techniques for modeling the SPR process that could be used to optimize this joining method for magnesium alloys. Due to the process conditions needed to rivet the magnesium sheets, high strain rates and adiabatic heat generation are developed that require a robust material model. Thus, we employ an internal state variable (ISV) plasticity material model that captures strain-rate and temperature dependent deformation. In addition, we explore various damage modeling techniques needed to capture the piercing process observed in the joining of magnesium alloys. The simulations were performed using a two-dimensional axisymmetric model with various element deletion criterions resulting in good agreement with experimental data. The simulations results of this study show that the ISV material model is ideally suited for capturing the complex physics of the plasticity and damage observed in the SPR of magnesium alloys.

References

References
1.
Atzeni
,
E.
,
Ippolito
,
R.
, and
Settineri
,
L.
,
2009
, “
Experimental and Numerical Appraisal of Self-Piercing Riveting
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
17
20
.10.1016/j.cirp.2009.03.081
2.
Barnes
,
T. A.
, and
Pashby
,
I. R.
,
2000
, “
Joining Techniques for Aluminum Spaceframes Used in Automobiles Part II—Adhesive Bonding and Mechanical Fasteners
,”
J. Mater. Process. Technol.
,
99
(
1–3
), pp.
72
79
.10.1016/S0924-0136(99)00361-1
3.
Yan
,
J.
,
Xu
,
Z.
, and
Li
,
Z.
,
2005
, “
Microstructure Characteristics and Performance of Dissimilar Welds Between Magnesium Alloy and Aluminum Formed by Friction Stirring
,”
Scr. Mater.
,
53
(
5
), pp.
585
589
.10.1016/j.scriptamat.2005.04.022
4.
Czerwinski
,
F.
,
2011
, “
Welding and Joining of Magnesium Alloys
,”
Magnesium Alloys—Design, Processing and Properties
,
F.
Czerwinski
, ed.,
Intech
,
Bolton, ON, Canada
, pp.
469
491
.
5.
Florea
,
R. S.
,
Solanki
,
K. N.
,
Bammann
,
D. J.
,
Baird
,
J. C.
,
Jordon
,
J. B.
, and
Castanier
,
M. P.
,
2012
, “
Resistance Spot Welding of 6061-T6 Aluminum: Failure Loads and Deformation
,”
Mater. Des.
,
34
(
1–4
), pp.
624
630
.10.1016/j.matdes.2011.05.017
6.
Ren
,
D.
,
Liu
,
L.
, and
Li
,
Y.
,
2011
, “
Investigation on Overlap Joining of AZ61 Magnesium Alloy: Laser Welding, Adhesive Bonding, and Laser Weld Bonding
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
195
204
.10.1007/s00170-011-3683-x
7.
Harooni
,
M.
,
Carlson
,
B.
, and
Kovacevic
,
R.
,
2014
, “
Dual-Beam Laser Welding of AZ31B Magnesium Alloy in Zero-Gap Lap Joint Configuration
,”
Opt. Laser Technol.
,
56
(
1
), pp.
247
255
.10.1016/j.optlastec.2013.08.018
8.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Daniewicz
,
S. R.
,
Badarinarayan
,
H.
, and
Grantham
,
J.
,
2010
, “
Fatigue Characterization and Modeling of Friction Stir Spot Welds in Magnesium AZ31 Alloy
,”
ASME J. Eng. Mater. Technol.
,
132
(
4
), p.
41008
.10.1115/1.4002330
9.
Wang
,
J. W.
,
Liu
,
Z. X.
,
Shang
,
Y.
,
Liu
,
A. L.
,
Wang
,
M. X.
,
Sun
,
R. N.
, and
Wang
,
P.-C.
,
2011
, “
Self-Piercing Riveting of Wrought Magnesium AZ31 Sheets
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031009
.10.1115/1.4004138
10.
Porcaro
,
R.
,
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Aalberg
,
A.
,
2006
, “
Self-Piercing Riveting Process: An Experimental and Numerical Investigation
,”
J. Mater. Process. Technol.
,
171
(
1
), pp.
10
20
.10.1016/j.jmatprotec.2005.05.048
11.
He
,
X.
,
Pearson
,
I.
, and
Young
,
K.
,
2008
, “
Self-Pierce Riveting for Sheet Materials: State of the Art
,”
J. Mater. Process. Technol.
,
199
(
1–3
), pp.
27
36
.10.1016/j.jmatprotec.2007.10.071
12.
Durandet
,
Y.
,
Deam
,
R.
,
Beer
,
A.
,
Song
,
W.
, and
Blacket
,
S.
,
2010
, “
Laser Assisted Self-Pierce Riveting of AZ31 Magnesium Alloy Strips
,”
Mater. Des.
,
31
(
1
), pp.
S13
S16
.10.1016/j.matdes.2009.10.038
13.
Casalino
,
G.
,
Rotondo
,
A.
, and
Ludovico
,
A.
,
2008
, “
On the Numerical Modelling of the Multiphysics Self Piercing Riveting Process Based on the Finite Element Technique
,”
Adv. Eng. Softw.
,
39
(
9
), pp.
787
795
.10.1016/j.advengsoft.2007.12.002
14.
Hoang
,
N.-H.
,
Porcaro
,
R.
,
Langseth
,
M.
, and
Hanssen
,
A.-G.
,
2010
, “
Self-Piercing Riveting Connections Using Aluminium Rivets
,”
Int. J. Solids Struct.
,
47
(
3–4
), pp.
427
439
.10.1016/j.ijsolstr.2009.10.009
15.
Huang
,
L.
,
Lasecki
,
J. V.
,
Guo
,
H.
, and
Su
,
X.
,
2014
, “
Finite Element Modeling of Dissimilar Metal Self-Piercing Riveting Process
,”
SAE Int. J. Mater. Manf.
,
7
(
3
), pp.
698
705
.10.4271/2014-01-1982
16.
Bouchard
,
P. O.
,
Laurent
,
T.
, and
Tollier
,
L.
,
2008
, “
Numerical Modeling of Self-Pierce Riveting—From Riveting Process Modeling Down to Structural Analysis
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
290
300
.10.1016/j.jmatprotec.2007.08.077
17.
Bammann
,
D.
,
1984
, “
An Internal Variable Model of Viscoplasticity
,”
Int. J. Eng. Sci.
,
22
(
8
), pp.
1041
1053
.10.1016/0020-7225(84)90105-8
18.
Bammann
,
D.
, and
Aifantis
,
E. C.
,
1989
, “
A Damage Model for Ductile Metals
,”
Nucl. Eng. Des.
,
116
(
3
), pp.
355
362
.10.1016/0029-5493(89)90095-2
19.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
,
1996
, “
Modeling Large Deformation and Failure in Manufacturing Processes
,”
Theoretical and Applied Mechanics
,
T.
Tatsumi
,
E.
Wannabe
, and
T.
Kambe
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
256
276
.
20.
Horstemeyer
,
M.
, and
Gokhale
,
A.
,
1999
, “
A Void–Crack Nucleation Model for Ductile Metals
,”
Int. J. Solids Struct.
,
36
(
33
), pp.
5029
5055
.10.1016/S0020-7683(98)00239-X
21.
Marin
,
E. B.
,
Bammann
,
D. J.
,
Regueiro
,
R. A.
, and
Johnson
,
G. C.
,
2006
, “
On the Formulation, Parameter Identification and Numerical Integration of the EMMI Model: Plasticity and Isotropic Damage
,” Sandia National Laboratories, Livermore, CA, Report No. SAND2006-0200.
22.
Horstemeyer
,
M. F.
,
2001
, “
From Atoms to Autos: A New Design Paradigm Using Microstructure-Property Modeling. Part 1: Monotonic Loading Conditions
,” Sandia National Laboratories, Livermore, CA, Report No. SAND2000-8662.
23.
Horstemeyer
,
M. F.
, and
Wang
,
P.
,
2004
, “
Cradle-to-Grave Simulation-Based Design Incorporating Multiscale Microstructure-Property Modeling: Reinvigorating Design With Science
,”
J. Comput. Mater. Des.
,
10
(
1
), pp.
13
34
.10.1023/B:JCAD.0000024171.13480.24
24.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Solanki
,
K.
, and
Xue
,
Y.
,
2007
, “
Damage and Stress State Influence on the Bauschinger Effect in Aluminum Alloys
,”
Mech. Mater.
,
39
(
10
), pp.
920
931
.10.1016/j.mechmat.2007.03.004
25.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
8
9
.10.1179/030634580790441187
26.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
, “
On Creep Fracture By Void Growth
,”
Prog. Mater. Sci.
,
27
(
3–4
), pp.
189
244
.10.1016/0079-6425(82)90001-9
27.
Hasenpouth
,
D.
,
2010
, “
Tensile High Strain Rate Behavior of AZ31B Magnesium Alloy Sheet
,” Master thesis, University of Waterloo, Waterloo, ON, Canada.
28.
Wu
,
H.
,
Sun
,
P.
, and
Lin
,
F.
,
2011
, “
Anisotropic and Tensile Flow Behaviors of Mg Alloy AZ31B Thin Sheet in H24 Condition at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2522
2531
.10.1016/j.msea.2010.11.082
29.
LSTC
,
2012
, LS-DYNA Keyword User's Manual, Livermore Software Technology Corp., Livermore, CA.
30.
Bammann
,
D.
,
Chiesa
,
M.
,
Horstemeyer
,
M. F.
, and
Weingarten
,
L.
,
1993
, “
Failure in Ductile Material Using Finite Element Methods
,”
Structural Crashworthiness and Failure
,
N.
Jones
, and
T.
Weirzbicki
, eds.,
Elsevier Applied Science
,
London, UK
, pp.
1
52
.
31.
Ceretti
,
E.
,
Fiorentino
,
A.
, and
Giardini
,
C.
,
2008
, “
Process Parameters Influence on Friction Coefficient in Sheet Forming Operations
,”
Int. J. Mater. Form.
,
1
(
S1
), pp.
1219
1222
.10.1007/s12289-008-0161-6
32.
Bolz
,
R. E.
, and
Tuve
,
G. L.
,
1973
,
CRC Handbook of Tables for Applied Engineering Science
,
CRC Press
,
Boca Raton, FL
.
33.
Xu
,
W. L.
,
Ma
,
C. H.
,
Li
,
C. H.
, and
Feng
,
W. J.
,
2004
, “
Sensitive Factors in Springback Simulation for Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
217
222
.10.1016/j.jmatprotec.2004.04.044
34.
Finn
,
M. J.
,
Galbraith
,
P. C.
,
Wu
,
L.
,
Hallquist
,
J. O.
,
Lum
,
L.
, and
Lin
,
T.-L.
,
1995
, “
Use of a Coupled Explicit-Implicit Solver for Calculating Spring-Back in Automotive Body Panels
,”
J. Mater. Process. Technol.
,
50
(
1–4
), pp.
395
409
.10.1016/0924-0136(94)01401-L
35.
Aberlenc
,
F.
, and
Babeau
,
J.-L.
,
1992
, “
OPTRIS and FICTURE: Industrial Tools to Modelize Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
34
(
1–4
), pp.
125
132
.10.1016/0924-0136(92)90098-D
36.
Ahad
,
F. R.
,
Enakoutsa
,
K.
,
Solanki
,
K. N.
, and
Bammann
,
D. J.
,
2014
, “
Nonlocal Modeling in High-Velocity Impact Failure of 6061-T6 Aluminum
,”
Int. J. Plast.
,
55
, pp. 108-132.10.1016/j.ijplas.2013.10.001
You do not currently have access to this content.