The present paper is concerned with the use of the elastoplastic theory of critical distances (TCD) to perform the fatigue assessment of notched components subjected to in-service variable amplitude (VA) fatigue loading. The elastoplastic TCD takes as its starting point the assumption that the detrimental effect of stress/strain concentrators of any kind can efficiently be taken into account by directly postprocessing the entire elastoplastic stress/strain field in the vicinity of the notch apex. Thanks to its specific features, the TCD can be formalized in different ways by simply changing size and geometrical features of the domain used to calculate the required effective stress. The so-called point method (PM) is the simplest form in which this theory can be applied. This formalization of the TCD postulates that the elastoplastic stress/strain state to be used to estimate fatigue damage has to be determined at a given distance from the tip of the notch being assessed. According to the TCD's philosophy, such a distance is treated as a fatigue property. Therefore, given the material, this critical length does not change as either the features of the assessed stress/strain concentrator or the profile of the investigated loading path vary. In the present study, the above design strategy is attempted to be used to estimate lifetime of notched component subjected to VA loading, the required critical distance being determined under constant amplitude (CA) loading. The accuracy and reliability of the devised approach were checked by using a number of experimental results generated by testing, under both concave upward and concave downward spectra, notched samples containing geometrical features having a different sharpness. Such a validation exercise allowed us to prove that the elastoplastic TCD, used in the form of the PM, is highly accurate in estimating fatigue damage also in notched components subjected to in-service VA loading.

References

1.
Neuber
,
H.
,
1958
,
Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material
, 2nd ed.,
Springer-Verlag
,
Berlin, Germany
.
2.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
544
550
.10.1115/1.3641780
3.
Peterson
,
R. E.
,
1959
, “
Notch Sensitivity
,”
Metal Fatigue
,
G.
Sines
and
J. L.
Waisman
, eds.,
McGraw-Hill
,
New York
, pp.
293
306
.
4.
Taylor
,
D.
,
2007
,
The Theory of Critical Distances: A New Perspective in Fracture Mechanics
,
Elsevier
,
Oxford
, UK.
5.
Susmel
,
L.
, and
Taylor
,
D.
,
2008
, “
Fatigue Design in the Presence of Stress Concentrations
,”
J. Strain Anal. Eng. Des.
,
38
(
5
), pp.
443
452
.10.1243/03093240360713496
6.
Manson
,
S. S.
,
1954
, “
Behaviour of Materials Under Conditions of Thermal Stress
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA TN-2933.
7.
Coffin
,
L. F.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
,
76
, pp.
931
950
.
8.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
, 2nd ed.,
Wiley
,
New York
.
9.
Glinka
,
G.
,
1985
, “
Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks
,”
Eng. Fract. Mech.
,
22
(
3
), pp.
485
508
.10.1016/0013-7944(85)90148-1
10.
Fatemi
,
A.
,
Zeng
,
Z.
, and
Plaseied
,
A.
,
2004
, “
Fatigue Behavior and Life Predictions of Notched Specimens Made of QT and Forged Microalloyed Steels
,”
Int. J. Fatigue
,
26
(
6
), pp.
663
672
.10.1016/j.ijfatigue.2003.10.005
11.
Susmel
,
L.
, and
Taylor
,
D.
,
2010
, “
An Elasto-Plastic Reformulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components Failing in the Low/Medium-Cycle Fatigue Regime
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021002
.10.1115/1.4000667
12.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
,
1970
, “
A Stress-Strain Function for the Fatigue of Metal
,”
J. Mater.
,
5
(4), pp.
767
778
.
13.
Smith
,
R. A.
, and
Miller
,
K. J.
,
1978
, “
Prediction of Fatigue Regimes in Notched Components
,”
Int. J. Mech. Sci.
,
20
(
4
), pp.
201
206
.10.1016/0020-7403(78)90082-6
14.
Taylor
,
D.
,
1999
, “
Geometrical Effects in Fatigue: A Unifying Theoretical Model
,”
Int. J. Fatigue
,
21
(
5
), pp.
413
420
.10.1016/S0142-1123(99)00007-9
15.
Taylor
,
D.
,
2001
, “
A Mechanistic Approach to Critical-Distance Methods in Notch Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
4
), pp.
215
224
.10.1046/j.1460-2695.2001.00401.x
16.
Susmel
,
L.
, and
Taylor
,
D.
,
2007
, “
A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-Cycle Fatigue Regime
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
7
), pp.
567
581
.10.1111/j.1460-2695.2007.01122.x
17.
Susmel
,
L.
, and
Taylor
,
D.
,
2011
, “
The Theory of Critical Distances to Estimate Lifetime of Notched Components Subjected to Variable Amplitude Uniaxial Fatigue Loading
,”
Int. J. Fatigue
,
33
(
7
), pp.
900
911
.10.1016/j.ijfatigue.2011.01.012
18.
Ellyin
,
F.
,
1997
,
Fatigue Damage, Crack Growth and Life Prediction
,
Chapman & Hall
,
London
, UK.
19.
Socie
,
D. F.
, and
Morrow
,
J.
,
1980
, “
Review of Contemporary Approaches to Fatigue Damage Analysis
,”
Risk and Failure Analysis for Improved Performance and Reliability
,
J. J.
Burke
and
V.
Weiss
, eds.,
Plenum
,
New York
, pp.
141
194
.
20.
Morrow
,
J. D.
,
1965
, “
Cyclic Plastic Strain Energy and the Fatigue of Metals
,”
Internal Friction, Damping and Cyclic Plasticity
,
ASTM
,
Philadelphia
, PA, pp.
45
87
.
21.
Dowling
,
N. E.
,
2009
, “
Mean Stress Effects in Strain–Life Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
12
), pp.
1004
1019
.10.1111/j.1460-2695.2009.01404.x
22.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.10.1016/S0142-1123(97)00081-9
23.
Palmgren
,
A.
,
1924
, “
Die Lebensdauer von Kugellagern
,”
Verfahrenstechnik
,
68
(14), pp.
339
341
.
24.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
67
, pp.
AI59
AI64
.
25.
Sonsino
,
C. M.
,
2007
, “
Fatigue Testing Under Variable Amplitude Loading
,”
Int. J. Fatigue
,
29
(
6
), pp.
1080
1089
.10.1016/j.ijfatigue.2006.10.011
26.
Matsuishi
,
M.
, and
Endo
,
T.
,
1968
,
Fatigue of Metals Subjected to Varying Stress
,
Japan Society of Mechanical Engineers
,
Fukuoka, Japan
.
27.
Downing
,
S. D.
, and
Socie
,
F.
,
1982
, “
Simple Rainflow Counting Algorithms
,”
Int. J. Fatigue
,
4
(
1
), pp.
31
40
.10.1016/0142-1123(82)90018-4
28.
ASTM
,
1998
,
Standard Practice for Strain-Controlled Fatigue Testing
,
American Society for Testing and Materials
, West Conshohocken, PA, Report No. ASTM E606-12.
29.
Gurney
,
T.
,
2006
,
Cumulative Damage of Welded Joints
,
Woodhead Publishing
,
Cambridge
, UK.
30.
Costa
,
J. D. M.
,
Antunes
,
F. J. V.
,
Silva
,
V. R.
, and
Ferreira
,
J. A. M.
,
2004
, “
Comparative Analysis of Fatigue Life Predictions in Central Notched Specimens of Al–Mg–Si Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
9
), pp.
837
848
.10.1111/j.1460-2695.2004.00735.x
31.
Köttgen
,
V. B.
,
Brkey
,
M. E.
, and
Socie
,
D. F.
,
1995
, “
Pseudo Stress and Pseudo Strain Based Approaches to Multiaxial Notch Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(9), pp.
981
1006
.
32.
Zeng
,
Z.
, and
Fatemi
,
A.
,
2001
, “
Elasto-Plastic Stress and Strain Behaviour at Notch Roots Under Monotonic and Cyclic Loadings
,”
J. Strain Anal.
,
36
(
3
), pp.
287
300
.10.1243/0309324011514476
33.
Mróz
,
Z.
,
1967
, “
On the Description of Anisotropic Workhardening
,”
J. Mech. Phys. Solids
,
15
(
3
), pp.
163
175
.10.1016/0022-5096(67)90030-0
34.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modelling of Cyclic Ratchetting Plasticity—Part I: Development and Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
720
725
.10.1115/1.2823355
35.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modelling of Cyclic Ratchetting Plasticity—Part II: Comparison of Model Simulations With Experiments
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
726
733
.10.1115/1.2823356
36.
Hoffmeyer
,
J.
,
Döring
,
R.
,
Seeger
,
T.
, and
Vormwald
,
M.
,
2006
, “
Deformation Behaviour, Short Crack Growth and Fatigue Lives Under Multiaxial Nonproportional Loading
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
508
520
.10.1016/j.ijfatigue.2005.05.014
37.
Susmel
,
L.
,
Atzori
,
B.
,
Meneghetti
,
G.
, and
Taylor
,
D.
,
2011
, “
Notch and Mean Stress Effect in Fatigue as Phenomena of Elasto-Plastic Inherent Multiaxiality
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1628
1643
.10.1016/j.engfracmech.2011.02.011
38.
Hoffmann
,
M.
, and
Seeger
,
T.
,
1985
, “
A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains Part 1: Theory
,”
ASME J. Eng. Mater. Technol.
,
107
(
4
), pp.
250
255
.10.1115/1.3225814
39.
Hoffmann
,
M.
, and
Seeger
,
T.
,
1985
, “
A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains, Part 2: Application and General Discussion
,”
ASME J. Eng. Mater. Technol.
,
107
(
4
), pp.
255
260
.10.1115/1.3225815
40.
Barkey
,
M. E.
,
Socie
,
D. F.
, and
Hsia
,
K. J.
,
1994
, “
A Yield Surface Approach to the Estimation of Notch Strains for Proportional and Nonproportional Cyclic Loading
,”
ASME J. Eng. Mater. Technol.
,
116
(
2
), pp.
173
180
.10.1115/1.2904269
41.
Livieri
,
P.
, and
Nicoletto
,
G.
,
2003
, “
Elastoplastic Strain Concentration Factors in Finite Thickness Plates
,”
J. Strain Anal.
,
38
(
1
), pp.
31
36
.10.1243/030932403762671863
You do not currently have access to this content.