High damping rubber (HDR) is used in HDR bearings (HDRBs) which are dissipating devices in structural systems. These devices actually have to support permanent static load in compression and potential cyclic shear when earthquakes occur. Mastering the behavior of bearings implies an accurate understanding of HDR response in such configuration. The behavior of HDR is, however, complex due to the nonlinearity and time dependance of stress–strain response and especially Mullins effect. To the authors' knowledge, tests on HDR under combined quasi-static compression and cyclic shear (QC-CS) have not been performed with regard to Mullins effect yet. The purpose of this study is thus to assess experimentally Mullins effect in HDR, especially under QC-CS. In order to achieve this aim, cyclic tensile and compression tests were first carried out to confirm the occurrence of Mullins effect in the considered HDR. Then, an original biaxial setup allowing testing HDR specimen under QC-CS was developed. This setup enables us to identify Mullins effect of the considered HDR under this kind of loading. Tests carried out with this setup were thus widened to the study of the influence of compression stress on shear response under this loading, especially in terms of shear modulus and density of energy dissipation.

References

References
1.
Roeder
,
C. W.
, and
Stanton
,
J. F.
,
1983
, “
Elastomeric Bearings: State-of-the-Art
,”
ASCE J. Struct. Eng.
,
109
(
12
), pp.
2853
2871
.10.1061/(ASCE)0733-9445(1983)109:12(2853)
2.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
3.
Lion
,
A.
,
1997
, “
On the Large Deformation Behaviour of Reinforced Rubber at Different Temperature
,”
J. Mech. Phys. Solids
,
45
(
11–12
), pp.
1805
1834
.10.1016/S0022-5096(97)00028-8
4.
Miehe
,
C.
, and
Keck
,
J.
,
2000
, “
Superimposed Finite Elastic–Viscoelastic–Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
323
365
.10.1016/S0022-5096(99)00017-4
5.
Amin
,
A. F. M. S.
,
Alam
,
M. S.
, and
Okui
,
Y.
,
2002
, “
An Improved Hyperelasticity Relation in Modeling Viscoelasticity Response of Natural and High Damping Rubbers in Compression: Experiments, Parameter Identification and Numerical Verification
,”
Mech. Mater.
,
34
(
2
), pp.
75
95
.10.1016/S0167-6636(01)00102-8
6.
Cheng
,
M.
, and
Chen
,
W.
,
2003
, “
Experimental Investigation of the Stress-Stretch Behavior of EPDM Rubber With Loading Rate Effects
,”
Int. J. Solids Struct.
,
40
(
18
), pp.
4749
4768
.10.1016/S0020-7683(03)00182-3
7.
Bouasse
,
H.
, and
Carrière
,
Z.
,
1903
, “
Sur les courbes de traction du caoutchouc vulcanisé
,”
Ann. Faculté des Sci. Toulouse
,
5
(
3
), pp.
257
283
.10.5802/afst.205
8.
Mullins
,
L.
,
1948
, “
Effect of Stretching on the Properties of Rubber
,”
J. Rubber Res.
,
16
(
12
), pp.
275
282
.10.5254/1.3546914
9.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
(
1
), pp.
339
362
.10.5254/1.3539210
10.
Bueche
,
F.
,
1960
, “
Molecular Basis for the Mullins Effect
,”
J. Appl. Polym. Sci.
,
4
(
10
), pp.
107
114
.10.1002/app.1960.070041017
11.
Houwink
,
R.
,
1956
, “
Slipping of Molecules During the Deformation of Reinforced Rubber
,”
Rubber Chem. Technol.
,
29
(
3
), pp.
888
893
.10.5254/1.3542602
12.
Hamed
,
G. R.
, and
Hatfield
,
S.
,
1989
, “
On the Role of Bound Rubber in Carbon-Black Reinforcement
,”
Rubber Chem. Technol.
,
62
(
1
), pp.
143
156
.10.5254/1.3536231
13.
Diani
,
J.
,
Fayolle
,
B.
, and
Gilormini
,
P.
,
2009
, “
A Review on the Mullins Effect
,”
Eur. Polym. J.
,
45
(
3
), pp.
601
612
.10.1016/j.eurpolymj.2008.11.017
14.
Haupt
,
P.
, and
Sedlan
,
K.
,
2001
, “
Viscoplasticity of Elastomeric Materials: Experimental Facts and Constitutive Modelling
,”
Arch. Appl. Mech.
,
71
(
2–3
), pp.
89
109
.10.1007/s004190000102
15.
Chagnon
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Marckmann
,
G.
, and
Charrier
,
P.
,
2004
, “
On the Relevance of Continuum Damage Mechnaics Applied to the Mullins Effect in Elastomers
,”
J. Mech. Phys. Solids
,
52
(
7
), pp.
1627
1650
.10.1016/j.jmps.2003.12.006
16.
Li
,
J.
,
Mayau
,
D.
, and
Lagarrigue
,
V.
,
2008
, “
A Constitutive Model Dealing With Damage Due to Cavity Growth and the Mullins Effect in Rubber-Like Materials Under Triaxial Loading
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
953
973
.10.1016/j.jmps.2007.06.009
17.
Amin
,
A. F. M. S.
,
Lion
,
A.
,
Sekita
,
S.
, and
Okui
,
Y.
,
2006
, “
Nonlinear Dependance of Viscosity in Modeling the Rate-Dependant Response of Natural and High Damping Rubbers in Compression and Shear: Experimental Identification and Numerical Verification
,”
Int. J. Plast.
,
22
(
9
), pp.
1610
1657
.10.1016/j.ijplas.2005.09.005
18.
Marvalova
,
B.
,
2007
, “
Viscoelastic Properties of Filled Rubber. Experimental Observations and Material Modeling
,”
Eng. Mech.
,
14
(
1–2
), pp.
81
89
.
19.
Cantournet
,
S.
,
Desmorat
,
R.
, and
Besson
,
J.
,
2009
, “
Mullins Effect and Cyclic Stress Softening of Filled Elastomers by Internal Sliding and Friction Thermodynamics Model
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2255
2264
.10.1016/j.ijsolstr.2008.12.025
20.
Cardone
,
D.
, and
Gesualdi
,
G.
,
2012
, “
Experimental Evaluation of the Mechanical Behavior of Elastomeric Materials for Seismic Applications at Different Air Temperatures
,”
Int. J. Mech. Sci.
,
64
(
1
), pp.
127
143
.10.1016/j.ijmecsci.2012.07.008
21.
Mars
,
W. V.
, and
Fatemi
,
A.
,
2004
, “
Observations of the Constitutive Response and Characterization of Filled Natural Rubber Under Monotonic and Cyclic Multiaxial Stress States
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
19
28
.10.1115/1.1631432
22.
Suh
,
J. B.
,
2007
, “
Stress Analysis of Rubber Blocks Under Vertical Loading and Shear Loading
,” Ph.D. thesis, University of Akron, Akron, OH.
23.
Gent
,
A. N.
, and
Lindley
,
P. B.
,
1959
, “
The Compression of Bonded Rubber Blocks
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
111
122
.10.1243/PIME_PROC_1959_173_022_02
24.
Burtscher
,
S. L.
, and
Dorfmann
,
A.
,
2004
, “
Compression and Shear Tests of Anisotropic High Damping Rubber Bearings
,”
Eng. Struct.
,
26
(
13
), pp.
1979
1991
.10.1016/j.engstruct.2004.07.014
25.
Dall'Asta
,
A.
, and
Ragni
,
L.
,
2006
, “
Experimental Tests and Analytical Model of High Damping Rubber Dissipating Devices
,”
Eng. Struct.
,
28
(
13
), pp.
1874
1884
.10.1016/j.engstruct.2006.03.025
26.
Payne
,
A. R.
,
1962
, “
The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates
,”
J. Appl. Polym. Sci.
,
6
(
19
), pp.
57
63
.10.1002/app.1962.070061906
27.
Bair
,
S.
,
Jarzynski
,
J.
, and
Winer
,
W. O.
,
2001
, “
The Temperature, Pressure and Time Dependance of Lubricant Viscosity
,”
Tribol. Int.
,
34
(
7
), pp.
461
468
.10.1016/S0301-679X(01)00042-1
28.
Schmelzer
,
J. W. P.
,
Zanotto
,
E. D.
, and
Fokin
,
V. M.
,
2005
, “
Pressure Dependance of Viscosity
,”
J. Chem. Phys.
,
122
(
7
), p.
074511
.10.1063/1.1851510
29.
Kovacs
,
A. J.
,
Stratton
,
R. A.
, and
Ferry
,
J. D.
,
1963
, “
Dynamic Mechanical Properties of Polyvinyl Acetate in Shear in the Glass Transition Temperature Range
,”
J. Phys. Chem.
,
67
(
1
), pp.
152
161
.10.1021/j100795a037
30.
Struik
,
L. C. E.
,
1978
,
Physical Aging in Amorphous Polymers and Other Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
31.
Pixa
,
R.
,
Le Dû
,
V.
, and
Wippler
,
C.
,
1988
, “
Dilatometric Study of Deformation Induced Volume Increase and Recovery in Rigid PVC
,”
Colloid Polym. Sci.
,
266
(
10
), pp.
913
920
.10.1007/BF01410846
32.
Weissenberg
,
K.
,
1947
, “
A Continuum Theory of Rheological Phenomena
,”
Nature
,
159
(
4035
), pp.
310
311
.10.1038/159310a0
33.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
,
2nd ed.
, Vol.
1
,
Wiley
,
New York
.
34.
Barnes
,
H. A.
,
Hutton
,
J. F.
, and
Walters
,
K.
,
1989
,
An Introduction to Rheology
,
Elsevier
,
Amsterdam, The Netherlands
.
You do not currently have access to this content.