Frequency-domain approach for fatigue damage estimation and lifetime prediction of mechanical components is often used for its computational efficiency and the capability to give a synthetic representation of a random process. The problem with the approach is that the input data, the stress power spectral density (PSD), may not include the information about potential small amount of high amplitude cycles which can substantially increase the accumulated fatigue damage. The paper investigates the scatter of the accumulated damage in generated random stress histories and compares them to the results obtained by a frequency-domain approach—the Dirlik method. The results show a possibility of a severe underestimation of accumulated damage when using frequency-domain approach. In case a typical stress, history of a certain mechanical component includes sporadic high amplitude cycles their effect shoud be taken into consideration when using frequency-domain approach.

References

References
1.
Barkey
,
M.
,
Hack
,
M.
,
Speckert
,
M.
,
Zingsheim
,
F.
, and
Schafer
,
G.
, 2002, LMS Falancs Theory Manual, LMS Deutschland GmbH, Kaiserslautern, Germany.
2.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
, pp.
159
164
.
3.
Benasciutti
,
D.
, and
Tovo
,
R.
,
2005
, “
Spectral Methods for Lifetime Prediction Under Wide-Band Stationary Random Processes
,”
Int. J. Fatigue
,
27
(8), pp.
867
877
.10.1016/j.ijfatigue.2004.10.007
4.
Petrucci
,
G.
, and
Zuccarello
,
B.
,
2004
, “
Fatigue Life Prediction Under Wide Band Random Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(12), pp.
1183
1195
.10.1111/j.1460-2695.2004.00847.x
5.
Nagode
,
M.
, and
Fajdiga
,
M.
,
1998
, “
A General Multi-Modal Probability Density Function Suitable for Rainflow Ranges of Stationary Random Process
,”
Int. J. Fatigue
,
20
(3), pp.
211
223
.10.1016/S0142-1123(97)00106-0
6.
Klemenc
,
J.
, and
Fajdiga
,
M.
,
2008
, “
Improved Modeling of the Loading Spectra Using a Mixture Model Approach
,”
Int. J. Fatigue
,
30
(7), pp.
1298
1313
.10.1016/j.ijfatigue.2007.08.024
7.
Benasciutti
,
D.
, and
Tovo
,
R.
,
2006
, “
Fatigue Life Assessment in Non-Gaussian Random Loadings
,”
Int. J. Fatigue
,
28
(7), pp.
733
746
.10.1016/j.ijfatigue.2005.09.006
8.
Tovo
,
R.
, and
Benasciutti
,
D.
,
2002
, “
Cycle Distribution and Fatigue Damage Under Broad-Band Random Loading
,”
Int. J. Fatigue
,
24
(11), pp.
1137
1147
.10.1016/S0142-1123(02)00032-4
9.
Benasciutti
,
D.
, and
Tovo
,
R.
,
2006
, “
Comparison of Spectral Methods for Fatigue Analysis in Broad-Band Gaussian Random Processes
,”
Probab. Eng. Mech.
,
21
(
4
), pp.
287
299
.10.1016/j.probengmech.2005.10.003
10.
Sarkani
,
S.
, and
Kihl
,
D. P.
,
1994
, “
Fatigue of Welded Joints Under Narrow–Band Non-Gaussian Loadings
,”
Probab. Eng. Mech.
,
9
(3), pp.
179
190
.10.1016/0266-8920(94)90003-5
11.
Braccesi
,
C.
,
Cianetti
,
F.
,
Lori
,
G.
, and
Pioli
,
D.
,
2009
, “
The Frequency Domain Approach in Virtual Fatigue Estimation on Non-Linear Systems: The Problem of Non-Gaussian States of Stress
,”
Int. J. Fatigue
,
31
(
4
), pp.
766
775
.10.1016/j.ijfatigue.2008.03.007
12.
Benasciutti
,
D.
, and
Tovo
,
R.
,
2005
, “
Cycle Distribution and Fatigue Damage Assessment in Broad-Band Non-Gaussian Random Process
,”
Probab. Eng. Mech.
,
20
(2), pp.
115
127
.10.1016/j.probengmech.2004.11.001
13.
Braccesi
,
C.
,
Cianetti
,
F.
,
Lori
,
G.
, and
Pioli
,
D.
,
2005
, “
Fatigue Behaviour Analysis of Mechanical Components Subject to Random Bimodal Stress Process: Frequency Domain Approach
,”
Int. J. Fatigue
,
27
(4), pp.
335
345
.10.1016/j.ijfatigue.2004.09.004
14.
Zhao
,
W.
, and
Baker
,
M. J.
,
1992
, “
On the Probability Density Function of Rainflow Stress Range for Stationary Gaussian Process
,”
Int. J. Fatigue
,
14
(2), pp.
121
135
.10.1016/0142-1123(92)90088-T
15.
Gao
,
Z.
, and
Moan
,
T.
,
2008
, “
Frequency-Domain Fatigue Analysis of Wide-Band Stationary Gaussian Processes Using a Trimodal Spectral Formulation
,”
Int. J. Fatigue
,
30
(10–11), pp.
1944
1955
.10.1016/j.ijfatigue.2008.01.008
16.
Sherratt
,
F.
,
Bishop
,
N. W. M.
, and
Dirlik
,
T.
,
2005
,
Predicting Fatigue Life From Frequency-Domain Data: Current Methods, Part A: Design Requirements and Modern Methods
,
Engineering Integrity Society
, Sheffield, UK.
17.
Bishop
,
N. W. M.
,
1994
, Spectral Methods for Estimating the Integrity of Structural Components Subjected to Random Loading, Elsevier, New York, pp.
1685
1720
.
18.
Mršnik
,
M.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2013
, “
Frequency-Domain Methods for a Vibration-Fatigue-Life Estimation—Application to Real Data
,”
Int. J. Fatigue
,
47
, pp.
8
17
.10.1016/j.ijfatigue.2012.07.005
19.
Dirlik
,
T.
,
1985
, “
Application of Computers in Fatigue Analysis
,”
Ph.D.
thesis, University of Warwick, Coventry, UK.
20.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(3), pp.
282
332
.10.1002/j.1538-7305.1944.tb00874.x
21.
Low
,
Y. M.
,
2012
, “
Variance of the Fatigue Due to a Gaussian Narrowband Process
,”
Struct. Saf.
,
34
(1), pp.
381
389
.10.1016/j.strusafe.2011.09.001
22.
Zuccarello
,
B.
, and
Adragna
,
N. F.
,
2008
, “
A Novel Frequency Domain Method for Predicting Fatigue Crack Growth Under Wide Band Random Loading
,”
Int. J. Fatigue
,
29
(6), pp.
1065
1079
.10.1016/j.ijfatigue.2006.10.002
23.
Nagode
,
M.
,
Hack
,
M.
, and
Fajdiga
,
M.
,
2009
, “
High Cycle Thermo Mechanical Fatigue: Damage Operator Approach
,”
Fatigue Fract. Mater. Struct.
,
32
(6), pp.
505
514
.10.1111/j.1460-2695.2009.01353.x
You do not currently have access to this content.