Solids that exhibit negative Poisson's ratio are called auxetic materials. This paper examines the extent of transverse shear deformation with reference to bending deformation in simply supported auxetic plates as a ratio of Mindlin-to-Kirchhoff plate deflection for polygonal plates in general, with special emphasis on rectangular plates. Results for square plates show that the Mindlin plate deflection approximates the Kirchhoff plate deflection not only when the plate thickness is negligible, as is obviously known, but also when (a) the Poisson's ratio of the plate is very negative under all load distributions, as well as (b) at the central portion of the plate when the load is uniformly distributed. Hence geometrically thick plates are mechanically equivalent to thin plates if the plate Poisson's ratio is sufficiently negative. The high suppression of shear deformation in favor of bending deformation in auxetic plates suggests its usefulness for bending-based plate sensors that require larger difference in the in-plane strains between the opposing plate surfaces with minimal transverse deflection.

References

References
1.
Lakes
,
R.
,
1987
, “
Negative Poisson's Ratio Materials
,”
Science
,
238
(
4826
), pp. 551.10.1126/science.238.4826.551-a
2.
Wojciechowski
,
K. W.
, and
Branka
,
A. C.
,
1989
, “
Negative Poisson's Ratio in Isotropic Solids
,”
Phys. Rev. A
,
40
(
12
), pp.
7222
7225
.10.1103/PhysRevA.40.7222
3.
Evans
,
K. E.
, and
Caddock
,
B. D.
,
1989
, “
Microporous Materials With Negative Poisson's Ratios II: Mechanisms and Interpretation
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1883
1887
.10.1088/0022-3727/22/12/013
4.
Lakes
,
R. S.
,
1992
, “
Saint-Venant End Effects for Materials With Negative Poisson's Ratios
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
744
746
.10.1115/1.2894037
5.
Lakes
,
R. S.
,
1993
, “
Design Considerations for Materials With Negative Poisson's Ratios
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
696
700
.10.1115/1.2919256
6.
Phan-Thien
,
N.
, and
Karihaloo
,
B. L.
,
1994
, “
Materials With Negative Poisson's Ratio: A Qualitative Microstructural Model
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
1001
1004
.10.1115/1.2901547
7.
Chen
,
C. P.
, and
Lakes
,
R. S.
,
1996
, “
Micromechanical Analysis of Dynamic Behavior of Conventional and Negative Poisson's Ratio Foams
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
285
288
.10.1115/1.2806807
8.
Ting
,
T. C. T.
, and
Barnett
,
D. M.
,
2005
, “
Negative Poisson's Ratios in Anisotropic Linear Elastic Media
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
929
931
.10.1115/1.2042483
9.
Lim
,
T. C.
,
2010
, “
In-Plane Stiffness of Semi-Auxetic Laminates
,”
ASCE J. Eng. Mech.
,
136
(
9
), pp.
1176
1180
.10.1061/(ASCE)EM.1943-7889.0000167
10.
Bornengo
,
D.
,
Scarpa
,
F.
, and
Remillat
,
C.
,
2005
, “
Evaluation of Hexagonal Chiral Structure for Morphine Airfoil Concept
,”
IMechE J. Aerosp. Eng.
,
219
(
3
), pp.
185
192
.10.1243/095441005X30216
11.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
IMechE J. Aerosp. Eng.
,
221
(
4
), pp.
565
575
.10.1243/09544100JAERO185
12.
Dolla
,
W. J. S.
,
Fricke
,
B. A.
, and
Becker
,
B. R.
,
2007
, “
Structural and Drug Diffusion Models of Conventional and Auxetic Drug-Eluting Stents
,”
ASME J. Med. Dev.
,
1
(
1
), pp.
47
55
.10.1115/1.2355691
13.
Tan
,
T. W.
,
Douglas
,
G. R.
,
Bond
,
T.
, and
Phani
,
A. S.
,
2011
, “
Compliance and Longitudinal Strain of Cardiovascular Stents: Influence of Cell Geometry
,”
ASME J. Med. Dev.
,
5
(
4
), p.
041002
.10.1115/1.4005226
14.
Conn
,
A. T.
, and
Rossiter
,
J.
,
2012
, “
Smart Radially Folding Structures
,”
IEEE/ASME Trans. Mechatron.
17
(
5
), pp.
968
975
.10.1109/TMECH.2011.2153867
15.
Scarpa
,
F.
, and
Tomlinson
,
G.
,
2000
, “
On Static and Dynamic Design Criteria of Sandwich Plate Structures With a Negative Poisson's Ratio Core
,”
Appl. Mech. Eng.
,
5
(
1
), pp.
207
222
. Available at: http://www.ijame.uz.zgora.pl/ijame_files/archives/v5n1.htm#A16
16.
Scarpa
,
F.
, and
Tomlinson
,
G.
,
2000
, “
Theoretical Characteristics of the Vibration of Sandwich Plates With In-Plane Negative Poisson's Ratio Values
,”
J. Sound Vib.
,
230
(
1
), pp.
45
67
.10.1006/jsvi.1999.2600
17.
Ruzzene
,
M.
,
Mazzarella
,
L.
,
Tsopelas
,
P.
, and
Scarpa
,
F.
,
2002
, “
Wave Propagation in Sandwich Plates With Periodic Auxetic Core
,”
J. Intell. Mater. Syst. Struct.
,
13
(
9
), pp.
587
597
.10.1106/104538902031865
18.
Strek
,
T.
,
Maruszewski
,
B.
,
Narojczyk
, and
Wojciechowski
,
K. W.
,
2008
, “
Finite Element Analysis of Auxetic Plate Deformation
,”
J. Non-Cryst. Solids
,
354
(
35-39
), pp.
4475
4480
.10.1016/j.jnoncrysol.2008.06.087
19.
Kolat
,
P.
,
Maruszewski
,
B. M.
, and
Wojciechowski
,
K. W.
,
2010
, “
Solitary Waves in Auxetic Plates
,”
J. Non-Cryst. Solids
,
356
(
37–40
), pp.
2001
2009
.10.1016/j.jnoncrysol.2010.06.002
20.
Lim
,
T. C.
,
2013
, “
Optimal Poisson's Ratios for Laterally Loaded Rectangular Plates
,”
IMechE J. Mater.: Des. Appl.
,
227
(
2
), pp.
111
123
.10.1177/1464420712472634
21.
Lim
,
T. C.
,
2013
, “
Circular Auxetic Plates
,”
J. Mech.
,
29
(
1
), pp.
121
133
.10.1017/jmech.2012.113
22.
Lim
,
T. C.
,
2014
, “
Flexural Rigidity of Thin Auxetic Plates
,”
Int. J. Appl. Mech.
,
6
(
2
), p.
1450012
.10.1142/S1758825114500124
23.
Lim
,
T. C.
,
2013
, “
Thermal Stresses in Thin Auxetic Plates
,”
J. Therm. Stresses
,
36
(
11
), pp.
1131
1140
.10.1080/01495739.2013.818896
24.
Maruszewski
,
B. T.
,
Drzewiecki
,
A.
, and
Starosta
,
R.
,
2013
, “
Thermoelastic Damping in an Auxetic Rectangular Plate With Thermal Relaxation—Free Vibrations
,”
Smart Mater. Struct.
,
22
(
8
), p.
084003
.10.1088/0964-1726/22/8/084003
25.
Lim
,
T. C.
,
2014
, “
Buckling and Vibration of Circular Auxetic Plates
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
021007
.10.1115/1.4026617
26.
Lim
,
T. C.
,
2014
, “
Elastic Stability of Thick Auxetic Plates
,”
Smart Mater. Struct.
,
23
(
4
), p.
045004
.10.1088/0964-1726/23/4/045004
27.
Lim
,
T. C.
, “
Shear Deformation in Beams With Negative Poisson's Ratio
,”
IMechE J. Mater.: Des. Appl.
(in press).10.1177/1464420714526583
28.
Lim
,
T. C.
,
2013
, “
Shear Deformation in Thick Auxetic Plates
,”
Smart Mater. Struct.
,
22
(
8
), p.
084001
.10.1088/0964-1726/22/8/084001
29.
Reddy
,
J. N.
,
Lee
,
K. H.
, and
Wang
,
C. M.
,
2000
,
Shear Deformable Beams and Plates: Relationships With Classical Solutions
,
Elsevier
,
New York
.
30.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
31.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
69
77
.
32.
Wittrick
,
W. H.
,
1987
, “
Analytical, Three-Dimensional Elasticity Solutions to Some Plate Problems, and Some Observations on Mindlin's Plate Theory
,”
Int. J. Solids Struct.
,
23
(
4
), pp.
441
464
.10.1016/0020-7683(87)90010-2
33.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
2nd ed.
,
McGraw-Hill
,
Singapore
.
34.
Koenders
,
M. A.
,
1997
, “
Evolution of Spatially Structured Elastic Material Using a Harmonic Density Function
,”
Phys. Rev. E
,
56
(
5
), pp.
5585
5593
.10.1103/PhysRevE.56.5585
35.
Gaspar
,
N.
,
2001
, “
Structures and Heterogeneity in Deforming, Density Packed Granular Materials
,” PhD thesis, Kingston University, London.
36.
Gaspar
,
N.
,
Smith
,
C. W.
, and
Evans
,
K. E.
,
2003
, “
Effect of Heterogeneity on the Elastic Properties of Auxetic Materials
,”
J. Appl. Phys.
,
94
(
9
), pp.
6143
6149
.10.1063/1.1614847
37.
Lakes
,
R. S.
,
1983
, “
Size Effects and Micromechanics of a Porous Solid
,”
J. Mater. Sci.
,
18
(
9
), pp.
2572
2580
.10.1007/BF00547573
You do not currently have access to this content.