The present work incorporates an implementation of the two dimensional, Q-state Monte Carlo method to evaluate anisotropic grain growth in two-phase nanocrystalline/amorphous systems. Specifically, anisotropic grain boundaries are simulated via the use of surface energies and binding energies; the former attributable to the variation in grain orientation and assigned through a mapping process involving Wulff plots. The secondary, amorphous phase is randomly assigned to the lattice in accordance with a specified initial volume fraction. Among other findings, the results reveal that the grain boundary surface energy, as governed by the shape of the Wulff plot, plays a critical role in the resulting microstructure. Additionally, it was found that the addition of a secondary amorphous phase to an existing anisotropic grain boundary system evolves into primary grain microstructures characteristic of single phase isotropic systems.

References

References
1.
Tjong
,
S. C.
, and
Chen
,
H.
,
2004
, “
Nanocrystalline Materials and Coatings
,”
Mater. Sci. Eng., R
,
45
(
1–2
), pp.
1
88
.10.1016/j.mser.2004.07.001
2.
Liu
,
Z. J.
,
Zhang
,
C. H.
,
Shen
,
Y. G.
, and
Mai
,
Y.-W.
,
2004
, “
Monte Carlo Simulation of Nanocrystalline TiN/Amorphous SiNx Composite Films
,”
J. Appl. Phys.
,
95
(
2
), pp.
758
760
.10.1063/1.1633650
3.
Lu
,
C.
,
Mai
,
Y.-W.
, and
Shen
,
Y. G.
,
2006
, “
Recent Advances on Understanding the Origin of Superhardness in Nanocomposite Coatings: A Critical Review
,”
J. Mater. Sci.
,
41
(
3
), pp.
937
950
.10.1007/s10853-006-6577-9
4.
Yang
,
W.
,
Chen
,
L.
, and
Messing
,
G.
,
1995
, “
Computer Simulation of Anisotropic Grain Growth
,”
Mater. Sci. Eng., A
,
195
(
1–2
), pp.
179
187
.10.1016/0921-5093(94)06517-9
5.
Lifshitz
,
I. M.
, and
Slyozov
,
V. V.
,
1961
, “
The Kinetics of Precipitation From Supersaturated Solid Solutions
,”
J. Phys. Chem. Solids
,
19
(
1–2
), pp.
35
50
.10.1016/0022-3697(61)90054-3
6.
Hillert
,
M.
,
1965
, “
On the Theory of Normal and Abnormal Grain Growth
,”
Acta Metall.
,
13
(
3
), pp.
227
238
.10.1016/0001-6160(65)90200-2
7.
Fan
,
D.
, and
Chen
,
L.-Q.
,
1997
, “
Diffusion-Controlled Grain Growth in Two-Phase Solids
,”
Acta. Mater.
,
45
(
8
), pp.
3297
3310
.10.1016/S1359-6454(97)00022-0
8.
Anderson
,
M. P.
,
Srolovitz
,
D. J.
,
Grest
,
G. S.
, and
Sahni
,
P. S.
,
1984
, “
Computer Simulation of Grain Growth—I. Kinetics
,”
Acta Metall.
,
32
(
5
), pp.
783
792
.10.1016/0001-6160(84)90151-2
9.
Baxter
,
R. J.
,
1982
,
Exactly Solved Models in Statistical Mechanics
,
Academic Press
,
London
.
10.
Allen
,
J. B.
,
Cornwell
,
C. F.
,
Devine
,
B. D.
, and
Welch
,
C. R.
,
2013
, “
Simulations of Anisotropic Grain Growth Subject to Thermal Gradients Using Q-State Monte Carlo
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041005
.10.1115/1.4025171
11.
Kaysser
,
W. A.
,
Sprissler
,
M.
,
Handwerker
,
C. A.
, and
Blendell
,
J. E.
,
1987
, “
The Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina
,”
J. Am. Ceram. Soc.
,
70
(
5
), pp.
339
343
.10.1111/j.1151-2916.1987.tb05005.x
12.
Ito
,
O.
, and
Fuller
,
E. R.
, Jr.
,
1992
, “
Computer Modeling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Mater.
,
41
(
1
), pp.
191
198
.10.1016/0956-7151(93)90350-2
13.
Heuer
,
A. H.
,
Fryburg
,
G. A.
,
Ogbuji
,
L. U.
,
Mitchell
,
T. E.
, and
Shinozaki
,
S.
,
1978
, “
The β to α Transformation in Polycrystalline SiC: I, Microstructural Aspects
,”
J. Am. Ceram. Soc.
,
61
(
9
), pp.
406
412
.10.1111/j.1151-2916.1978.tb09348.x
14.
Mitchell
,
T. E.
,
Ogbuji
,
L. U.
, and
Heuer
,
A. H.
,
1978
, “
The β to α Transformation in Polycrystalline SiC: II, Interfacial Energies
,”
J. Am. Ceram. Soc.
,
61
(
9
), pp.
412
413
.10.1111/j.1151-2916.1978.tb09349.x
15.
Faber
,
K. T.
,
Evans
,
A. G.
, and
Drory
,
M. D.
,
1983
, “
A Statistical Analysis of Crack Deflection as a Toughening Mechanism in Ceramic Materials
,” Fracture Mechanics of Ceramics 6,
Plenum Press
,
New York
, pp.
77
92
.
16.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1983
, “
Crack Deflection Processes: I, Theory and II, Experiment
,”
Acta Metall.
,
31
(
4
), pp.
565
584
.10.1016/0001-6160(83)90046-9
17.
Bowen
,
L. T.
, and
Avella
,
E. J.
,
1983
, “
Microstructure, Electrical Properties, and Failure Prediction in Low Clamping Voltage Zinc Oxide Varistors
,”
J. Appl. Phys.
,
54
(
5
), pp.
2764
2772
.10.1063/1.332305
18.
Diserens
,
M.
,
Patscheider
,
J.
, and
Levy
,
F.
,
1998
, “
Improving the Properties of Titanium Nitride by Incorporation of Silicon
,”
Surf. Coat Technol.
,
108–109
, pp.
241
246
.10.1016/S0257-8972(98)00560-X
19.
Hu
,
X.
,
Han
,
Z.
,
Li
,
G.
, and
Gu
,
M.
,
2002
, “
Microstructure and Properties of Ti-Si-N Nanocomposite Films
,”
J. Vac. Sci. Technol. A
,
20
(
6
), pp.
1921
–1926.10.1116/1.1508802
20.
Liu
,
Z.-J.
, and
Shen
,
Y. G.
,
2003
, “
Effects of Amorphous Matrix on the Grain Growth Kinetics in Two-Phase Nanostructured Films: A Monte Carlo Study
,”
Acta Mater.
,
52
(
3
), pp.
729
736
.10.1016/j.actamat.2003.10.010
21.
Radhakrishnan
,
B.
, and
Zacharia
,
T.
,
1995
, “
Simulation of Curvature-Driven Grain Growth by Using a Modified Monte Carlo Algorithm
,”
Metall. Mater. Trans. A
,
26
(
1
), pp.
167
180
.10.1007/BF02669802
22.
Yu
,
Q.
, and
Esche
,
S. K.
,
2002
, “
A Monte Carlo Algorithm for Single Phase Normal Grain Growth With Improved Accuracy and Efficiency
,”
Comput. Mater. Sci.
,
27
(
3
), pp.
259
270
.10.1016/S0927-0256(02)00361-0
23.
Holm
,
E. A.
,
Hassold
,
G. N.
, and
Miodownik
,
M. A.
,
2001
, “
On Misorientation Distribution Evolution During Anisotropic Grain Growth
,”
Acta Mater.
,
49
(
15
), pp.
2981
2991
.10.1016/S1359-6454(01)00207-5
24.
Srolovitz
,
D. J.
,
Anderson
,
M. P.
,
Grest
,
G. S.
, and
Rollett
,
A. D.
,
1988
, “
Computer Simulation of Recrystallization—II. Heterogeneous Nucleation and Growth
,”
Acta Metall.
,
36
(
8
), pp.
2115
2128
.10.1016/0001-6160(88)90313-6
25.
Wejche
,
J.
,
Weaire
,
D.
, and
Kermode
,
J. P.
,
1986
, “
Monte Carlo Simulation of the Evolution of a Two-Dimensional Soap Froth
,”
Philos. Mag., B
,
53
(
1
), pp.
15
24
.10.1080/13642818608238968
26.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. T.
, and
Teller
,
E. J.
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
–1092.10.1063/1.1699114
27.
Garcia
,
A. L.
,
Tikare
,
V.
, and
Holm
,
E. A.
,
2008
, “
Three-Dimensional Simulation of Grain Growth in a Thermal Gradient With Non-Uniform Grain Boundary Mobility
,”
Scr. Mater.
,
59
(
6
), pp.
661
664
.10.1016/j.scriptamat.2008.05.039
28.
Grest
,
G. S.
,
Srolovitz
,
D. J.
, and
Anderson
,
M. P.
,
1985
, “
Computer Simulation of Grain Growth. 4. Anisotropic Grain Boundary Energies
,”
Acta Metall.
,
33
(
3
), pp.
509
–520.10.1016/0001-6160(85)90093-8
29.
Holm
,
E. A.
,
Glazier
,
J. A.
,
Srolovitz
,
D. J.
, and
Grest
,
G. S.
,
1991
, “
Effects of Lattice Anisotropy and Temperature on Domain Growth in the Two-Dimensional Potts Model
,”
Phys. Rev. A
,
43
(
6
), p.
2662
–2668.10.1103/PhysRevA.43.2662
30.
Upmanyu
,
M.
,
Hassold
,
G. N.
,
Kazaryan
,
A.
,
Holm
,
E. A.
,
Wang
,
Y.
,
Patton
,
B.
, and
Srolovitz
,
D. J.
,
2002
, “
Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth
,”
Interface Sci.
,
10
(
2–3
), pp.
201
216
.10.1023/A:1015832431826
31.
Fluent, Inc.
,
2007
,
Gambit 2.4 Users Guide
,
Fluent, Inc.
,
Lebanon, NH
.
32.
OpenFoam,
2006
,
The Mews
,
Picketts Lodge
,
Surrey, UK
.
33.
Fortes
,
M. A.
,
1992
, “
Grain Growth Kinetics: The Grain Growth Exponent—Grain Growth in Polycrystalline Materials I
,”
Mater. Sci. Forum
,
94–96
, pp.
319
324
.10.4028/www.scientific.net/MSF.94-96.319
34.
Kurtz
,
S. K.
, and
Carpay
,
F. M. A.
,
1980
, “
Microstructure and Normal Grain Growth in Metals and Ceramics. Part I. Theory
,”
J. Appl. Phys.
,
51
(
11
), pp.
5725
5744
.10.1063/1.327580
35.
Atkinson
,
H. V.
,
1988
, “
Theories of Normal Grain Growth in Pure Single Phase Systems
,”
Acta Metall.
,
36
(
3
), pp.
469
491
.10.1016/0001-6160(88)90079-X
36.
Zheng
,
Y. G.
,
Lu
,
C.
,
Mai
,
Y.-W.
,
Zhang
,
H. W.
, and
Chen
,
Z.
,
2006
, “
Model-Based Simulation of Normal Grain Growth in a Two-Phase Nanostructured System
,”
Sci. Technol. Adv. Mater.
,
7
(
8
), pp.
812
818
.10.1016/j.stam.2006.11.008
You do not currently have access to this content.