We used high-resolution quantitative surface analysis to evaluate the surfaces of two aluminum automotive closure panel alloys, which were bent to a 180 deg angle in a simulated hemming test. Maps of the displacements normal to the sheet were superimposed on the topographies to correlate the location of the maximum displacements and the surface morphology. While the alloys had similar mechanical properties, quantitative analyses yielded considerable differences in the deformed surface morphologies. One alloy had a greater density and broader size distribution of constituent particles, which increased the likelihood for particle decohesion. This resulted in large surface displacements that were uncorrelated with the underlying microstructure. While no splitting was observed in either alloy, large uncorrelated surface displacements could indicate the presence of short surface cracks.

References

References
1.
Wikipedia
,
2013
, “
Class-A Surfaces
,” https://en.wikipedia.org/wiki/Class_A_surfaces
2.
Wu
,
P. D.
,
Lloyd
,
D. J.
,
Jain
,
M.
,
Neale
,
K. W.
, and
Huang
,
Y.
,
2007
, “
Effects of Spatial Grain Orientation Distribution and Initial Surface Topography on Sheet Metal Necking
,”
Int. J. Plast.
,
23
(
6
), pp.
1084
1104
.10.1016/j.ijplas.2006.11.005
3.
Lloyd
,
D. J.
,
Evans
,
D.
,
Pelow
,
C.
,
Nolan
,
P.
, and
Jain
,
M.
,
2002
, “
Bending in Aluminium Alloys AA 6111 and AA 5754 Using the Cantilever Bend Test
,”
Mater. Sci. Technol.
,
18
(
6
), pp.
621
628
.10.1179/026708302225003604
4.
Lloyd
,
D. J.
,
Steele
,
D.
, and
Huang
,
J. C.
,
2010
, “
Plasticity Associated With Grain Boundaries During the Bending of an Al–Mg–Si-Based Alloy
,”
Scr. Mater.
,
63
(4), pp.
426
429
.10.1016/j.scriptamat.2010.04.046
5.
Friedman
,
P. A.
, and
Luckey
,
S. G.
,
2001
, “
Bendability of Al-Mg-Si Sheet Alloys for Automotive Closure Applications
,”
Aluminum 2001: Proceedings of the 2001 TMS Annual Meeting Automotive Alloys and Joining Aluminum Symposia, New Orleans, LA, February 11–15
,
S. K.
Das
,
J. G.
Kaufman
, and
T. J.
Lienert
, eds.,
TMS
, Warrendale, PA, pp.
3
15
.
6.
GM Worldwide,
2008
,
“Three-Point Bend Test for Hemming Performance Evaluation
,”
General Motors Corporation
, Warren, MI, Standard No. GMW15421.
7.
ISO
2005
,
“Metallic Materials—Bend Test
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO-7438:2005.
8.
Japanese Industrial Standard
2003
,
“Method for Hemming Test of Aluminum Alloy Sheets for Automotive Use
,”
Japanese Standards Association
,
Tokyo, Japan
, Standard No. JIS H 7701:2003.
9.
Krajewski
,
P. E.
,
Hector
,
L. G.
,
Qi
,
Y.
,
Mishra
,
R. K.
,
Sachdev
,
A. K.
,
Bower
,
A. F.
, and
Curtin
,
W. A.
,
2011
, “
Atoms to Autos: A Multi-Scale Approach to Modeling Aluminum Deformation
,”
JOM
,
63
(
11
), pp.
24
32
.10.1007/s11837-011-0187-y
10.
Stoudt
,
M. R.
,
Hubbard
,
J. B.
,
Iadicola
,
M. A.
, and
Banovic
,
S. W.
,
2009
, “
A Study of the Fundamental Relationships Between Deformation-Induced Surface Roughness and Strain Localization in AA5754
,”
Metall. Mater. Trans. A
,
40
(
7
), pp.
1611
1622
.10.1007/s11661-009-9881-6
11.
Stoudt
,
M. R.
, and
Hubbard
,
J. B.
,
2009
, “
The Fundamental Relationships Between Deformation-Induced Surface Roughness, Critical Strain Localization, and Failure in AA5754-O
,”
Philos. Mag. A
,
89
(
27
), pp.
2403
2425
.10.1080/14786430903120343
12.
Hubbard
,
J. B.
,
Stoudt
,
M. R.
, and
Possolo
,
A. M.
,
2011
, “
Topographic Analysis and Weibull Regression for Prediction of Strain Localisation in an Automotive Aluminium Alloy
,”
Mater. Sci. Technol.
,
27
(
7
), pp.
1206
1212
.10.1179/026708310X12701149768179
13.
Stoudt
,
M. R.
,
Levine
,
L. E.
,
Creuziger
,
A.
, and
Hubbard
,
J. B.
,
2011
, “
The Fundamental Relationships Between Grain Orientation, Deformation-Induced Surface Roughness and Strain Localization in an Aluminum Alloy
,”
Mater. Sci. Eng., A
,
530
, pp.
107
116
.10.1016/j.msea.2011.09.050
14.
Wang
,
X.
,
Poole
,
W. J.
,
Esmaeili
,
S.
,
Lloyd
,
D. J.
, and
Embury
,
J. D.
,
2003
, “
Precipitation Strengthening of the Aluminum Alloy AA6111
,”
Metall. Mater. Trans. A
,
34
(12), pp.
2913
2924
.10.1007/s11661-003-0191-0
15.
Cheng
,
L. M.
,
Poole
,
W. J.
,
Embury
,
J. D.
, and
Lloyd
,
D. J.
,
2003
, “
The Influence of Precipitation on the Work-Hardening Behavior of the Aluminum Alloys AA6111 and AA7030
,”
Metall. Mater. Trans. A
,
34
(11), pp.
2473
2481
.10.1007/s11661-003-0007-2
16.
Krajewski
,
P. E.
, and
Carsley
,
J. E.
,
2003
, “
Heat Treatment Effects on Bending in AA6111
,”
Aluminum 2003
: Proceedings of the 2003 TMS Annual Meeting, San Diego, CA, March 2–6,
S. K.
Das
, ed.,
TMS
,
Warrendale, PA
, pp.
25
35
.
17.
Carsley
,
J. E.
,
2005
, “
Microstructural Evolution During Bending: Conventional vs. Roller Hemming
,”
Trends in Materials and Manufacturing Technologies for Transportation Industries and Powder Metallurgy Research and Development in the Transportation Industry
: 6th MPMD Global Innovations Symposium, San Francisco, CA, February 13–17,
T. R.
Bieler
,
J. E.
Carsley
,
H. L.
Fraser
,
J. W.
Sears
, and
J. E.
Smurgeresky
, eds.,
TMS
,
Warrendale, PA
, pp.
169
174
.
18.
Le Maoût
,
N.
,
Thuillier
,
S.
, and
Manach
,
P.
,
2010
, “
Classical and Roll-Hemming Processes of Pre-Strained Metallic Sheets
,”
Exp. Mech.
,
50
(
7
), pp.
1087
1097
.10.1007/s11340-009-9297-7
19.
Lin
,
G.
,
Hu
,
S. J.
, and
Cai
,
W.
,
2009
, “
Evaluation of Formability in Bending/Hemming of Aluminum Alloys Using Plane-Strain Tensile Tests
,”
J. Manuf. Sci. Eng.
,
131
(
5
), p.
051009
.10.1115/1.3123316
20.
Mott
,
N. F.
,
1951
, “
The Mechanical Properties of Metals
,”
Proc. Phys. Soc. B
,
64
(9), pp.
729
741
.10.1088/0370-1301/64/9/301
21.
Pardoen
,
T.
, and
Brechet
,
Y.
,
2004
, “
Influence of Microstructure-Driven Strain Localization on the Ductile Fracture of Metallic Alloys
,”
Philos. Mag. A
,
84
(
3–5
), pp.
269
297
.10.1080/14786430310001610366
22.
Hansen
,
N.
, and
Jensen
,
D. J.
,
1999
, “
Development of Microstructure in FCC Metals During Cold Work
,”
Philos. Trans. R. Soc., A (London)
,
357
(1756), pp.
1444
1469
.10.1098/rsta.1999.0384
23.
Sarkar
,
J.
,
Kutty
,
T. R. G.
,
Wilkinson
,
D. S.
,
Embury
,
J. D.
, and
Lloyd
,
D. J.
,
2004
, “
Tensile Properties and Bendability of T4 Treated AA6111 Aluminum Alloys
,”
Mater. Sci. Eng., A
,
369
(
1–2
), pp.
258
266
.10.1016/j.msea.2003.11.022
24.
Inagaki
,
A.
,
Komatsubara
,
T.
, and
Inagaki
,
H.
,
1999
, “
Effect of Strain Rate and Temperature of Tensile Test on Lüders Strain in Al-Mg Alloys
,”
Z. Metallkd.
,
90
(
6
), pp.
427
433
.
25.
Zhu
,
G.
,
Hu
,
X.
,
Kang
,
J.
,
Mishra
,
R. K.
, and
Wilkinson
,
D. S.
,
2011
, “
Deformation Inhomogeneity in Large-Grained AA5754 Sheets
,”
Mater. Sci. Eng., A
,
528
(
12
), pp.
4187
4198
.10.1016/j.msea.2011.02.017
26.
Choi
,
S. H.
,
Barlat
,
F.
, and
Liu
,
J.
,
2000
, “
Effect of Precipitates on Plastic Anisotropy of Polycrystalline Aluminum Alloys
,”
Mater. Sci. Forum
,
331–337
, pp.
1327
1332
.10.4028/www.scientific.net/MSF.331-337.1327
27.
Inal
,
K.
,
Simha
,
H. M.
, and
Mishra
,
R. K.
,
2008
, “
Numerical Modeling of Second-Phase Particle Effects on Localized Deformation
,”
J. Eng. Mater. Technol.
,
130
(
2
), pp.
1
8
.10.1115/1.2840960
28.
Uchida
,
H.
,
Asano
,
M.
, and
Yoshida
,
H.
,
2002
, “
Effect of Second Phase Particles on the Bendability of Al-Mg-Si Alloy Sheet
,”
Aluminum 2002: Proceedings of the TMS 2002 Annual Meeting: Automotive Alloys and Aluminum Sheet and Plate Rolling and Finishing Technology Symposia
, Seattle, WA, February 18–21,
S. K.
Das
and
M. H.
Skillingberg
, eds.,
TMS
, Warrendale, PA, pp.
57
64
.
29.
Quainoo
,
G. K.
, and
Yannacopoulos
,
S.
,
2004
, “
The Effect of Prestrain on the Natural Aging and Fracture Behaviour of AA6111 Aluminum
,”
J. Mater. Sci
,
39
(15), pp.
4841
4847
.10.1023/B:JMSC.0000035323.96458.68
30.
Mohamed
,
F. A.
, and
Langdon
,
T. G.
,
1974
, “
Deformation Mechanism Maps Based on Grain Size
,”
Metall. Trans.
,
5
(11), pp.
2339
2345
.10.1007/BF02644014
31.
Massart
,
T. J.
, and
Pardoen
,
T.
,
2010
, “
Strain Gradient Plasticity Analysis of the Grain-Size-Dependent Strength and Ductility of Polycrystals With Evolving Grain Boundary Confinement
,”
Acta Mater.
,
58
(
17
), pp.
5768
5781
.10.1016/j.actamat.2010.06.052
32.
Kocks
,
U. F.
,
2001
, “
Realistic Constitutive Relations for Metal Plasticity
,”
Mater. Sci. Eng., A
,
317
(1–2), pp.
181
187
.10.1016/S0921-5093(01)01174-1
33.
Scheriau
,
S.
, and
Pippan
,
R.
,
2008
, “
Influence of Grain Size on Orientation Changes During Plastic Deformation
,”
Mater. Sci. Eng., A
,
493
(
1–2
), pp.
48
52
.10.1016/j.msea.2007.08.092
34.
Inagaki
,
H.
,
2007
, “
Texture Development in 6000 Series Al-Mg-Si Alloys for Car Body Panels
,”
Mater. Sci. Forum
,
558–559
, pp.
77
84
.10.4028/www.scientific.net/MSF.558-559.77
35.
Singh
,
R. K.
, and
Singh
,
A. K.
,
1998
, “
Evolution of Texture During Thermo-Mechanical Processing of an Al-Mg-Si-Cu Alloy
,”
Scr. Mater.
,
38
(
8
), pp.
1299
1306
.10.1016/S1359-6462(98)00045-1
36.
Takeda
,
H.
,
Hibino
,
A.
, and
Takata
,
K.
,
2010
, “
Influence of Crystal Orientations on the Bendability of an Al-Mg-Si Alloy
,”
Mater. Trans.
,
51
(
4
), pp.
614
619
.10.2320/matertrans.L-MG200951
37.
Miao
,
W.
, and
Laughlin
,
D.
,
2000
, “
Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022
,”
Metall. Mater. Trans. A
,
31
(
2
), pp.
361
371
.10.1007/s11661-000-0272-2
38.
Livak
,
R.
,
1982
, “
The Effects of Copper and Chromium on the Aging Response of Dilute Al-Mg-Si Alloys
,”
Metall. Mater. Trans. A
,
13
(
7
), pp.
1318
1321
.10.1007/BF02645517
39.
Chakrabarti
,
D. J.
, and
Laughlin
,
D. E.
,
2004
, “
Phase Relations and Precipitation in Al–Mg–Si Alloys With Cu Additions
,”
Prog. Mater. Sci.
,
49
(3–4), pp.
389
410
.10.1016/S0079-6425(03)00031-8
40.
Steele
,
D.
,
Evans
,
D.
,
Nolan
,
P.
, and
Lloyd
,
D. J.
,
2007
, “
Quantification of Grain Boundary Precipitation and the Influence of Quench Rate in 6XXX Aluminum Alloys
,”
Mater. Charact.
,
58
(
1
), pp.
40
45
.10.1016/j.matchar.2006.03.007
41.
Gupta
,
A. K.
,
Bookbinder
,
J. B.
,
Sang
,
H. S.
, and
Lloyd
,
D. J.
,
2000
, “
Role of Hardening Solutes on the Microstructure and Strength of AA6111 Automotive Alloy
,”
Mater. Sci. Forum
,
331–337
, pp.
1297
1302
.10.4028/www.scientific.net/MSF.331-337.1297
42.
Aluminum Association,
2003
,
Aluminum Standards and Data 2003
,
The Aluminum Association
,
Arlington, VA
.
43.
Davidkov
,
A.
,
Petrov
,
R. H.
,
De Smet
,
P.
,
Schepers
,
B.
, and
Kestens
,
L. A. I.
,
2011
, “
Microstructure Controlled Bending Response in AA6016 Al Alloys
,”
Mater. Sci. Eng., A
,
528
(
22–23
), pp.
7068
7076
.10.1016/j.msea.2011.05.055
44.
ASTM,
1993
, “
ASTM Designation E-08: Standard Test Methods for Tension Testing of Metallic Materials
,”
1993 Annual Book of ASTM Standards, Section 3, Metals Test Methods and Analytical Procedures
,
ASTM
,
Philadelphia
.
45.
Stoudt
,
M. R.
,
Hubbard
,
J. B.
, and
Janet
,
S. A.
,
2008
, “
Using Image-Based Methods to Characterize the Height Distribution of Deformation-Induced Surface Roughness Generated in Aluminum Sheet
,”
Mater. Sci. Technol.
,
24
(
3
), pp.
253
260
.10.1179/174328407X236562
46.
Dattorro
,
J.
,
2005
, “
Euclidean Distance Matrix
,”
Convex Optimization & Euclidean Distance Geometry
,
MeBoo Publishing
,
Palo Alto, CA
, pp.
219
314
.
47.
ASM,
1987
,
ASM Handbook Volume 9: Metallography and Microstructures
,
ASM International
,
Metals Park, OH
.
48.
Hatch
,
J. E.
,
1984
,
Aluminum-Properties and Physical Metallurgy
,
American Society for Metals, Metals Park
,
OH
.
49.
Strobel
,
K.
,
Sweet
,
E.
,
Easton
,
M.
,
Nie
,
J. F.
, and
Couper
,
M.
,
2010
, “
Dispersoid Phases in 6xxx Series Aluminum Alloys
,”
Mater. Sci. Forum
,
654–656
, pp.
926
929
.10.4028/www.scientific.net/MSF.654-656.926
50.
Rasband
,
W. S.
,
1997–2011
,
“ImageJ64
,”
U.S. National Institutes of Health
,
Bethesda, MD
.
51.
Smith
,
W. F.
,
1981
,
Structure and Properties of Engineering Alloys
,
McGraw-Hill Book Company
,
New York
.
52.
Balakrishnan
,
N.
, and
Nevzorov
,
V. B.
,
2003
,
A Primer on Statistical Distributions
,
J. Wiley and Sons
,
Hoboken, NJ
.
53.
Wikipedia,
2008
, “
Weibull Distribution
,” http://en.wikipedia.org/wiki/Weibull_distribution
54.
Hertzberg
,
R. W.
,
1976
,
Deformation and Fracture Mechanics of Engineering Materials
,
J. Wiley & Sons
,
New York
.
55.
Dao
,
M.
, and
Li
,
M.
,
2001
, “
A Micromechanical Study on Strain-Localization-Induced Fracture Initiation in Bending Using Crystal Plasticity Models
,”
Philos. Mag. A
,
81
(
8
), pp.
1997
2020
.10.1080/01418610108216649
56.
Vasudevan
,
A. K.
, and
Doherty
,
R. D.
,
1987
, “
Grain Boundary Ductile Fracture in Precipitation Hardened Aluminum Alloys
,”
Acta Metall.
,
35
(
6
), pp.
1193
1219
.10.1016/0001-6160(87)90001-0
57.
Sadananda
,
K.
, and
Vasudevan
,
V. K.
,
1997
, “
Short Crack Growth Behavior
,”
Fatigue and Fracture Mechanics, Vol. 27, ASTM STP1296
,
R. S.
Piascik
and
J. C.
Newman
, eds.,
ASTM
,
West Conshohocken, PA
, pp.
301
316
.
58.
Hahn
,
G.
, and
Rosenfield
,
A.
,
1975
, “
Metallurgical Factors Affecting Fracture Toughness of Aluminum Alloys
,”
Metall. Mater. Trans. A
,
6
(
4
), pp.
653
668
.10.1007/BF02672285
You do not currently have access to this content.