Full size creep test specimens, i.e., conventional uniaxial creep test specimen and Bridgman notch specimens are usually used to determine the full set of material constants for any creep model. However, in many situations, sufficient material is not available for theses specimens to be manufactured from it. Therefore, small creep test specimens have been introduced and used to determine (i) creep constants and (ii) the remaining life time for engineering components. Two commonly used small creep specimen types, i.e., the impression and the small ring creep tests, are used in this paper to determine the steady state creep constants. However, these specimen types are limited for use in determining the secondary creep properties, i.e., they are unable to determine the full set of material creep constants for creep damage models. In this paper the recently developed small two-bar creep test specimen and the newly developed small notched specimen test are described and used to determine a full set of material constants for Kachanov and Liu-Murakami creep damage models. The small notched specimen manufacturing, loading and testing procedures are described in this paper. P91 steel at 600 °C and (Bar-257) P91 steel at 650 °C have been used to compare the material constants obtained from the small two-bar and the small notched creep test specimens with those obtained from the conventional uniaxial creep test specimens and Bridgman notch specimens. The results show remarkably good agreement between the two sets of results.

References

References
1.
Häsänen
,
E.
,
Pohjola
,
V.
,
Hahkala
,
M.
,
Zilliacus
,
R.
, and
Wickstrom
,
K.
,
1986
, “
Emissions From Power Plants Fueled by Peat, Coal, Natural Gas, and Oil
,”
Sci Total Environ.
,
54
, pp.
29
51
.10.1016/0048-9697(86)90254-8
2.
Mondol
,
J. D.
,
McIlveen-Wright
,
D.
,
Rezvani
,
S.
,
Huang
,
Y.
, and
Hewitt
,
N.
,
2009
, “
Techno-Economic Evaluation of Advanced IGCC Lignite Coal Fuelled Power Plants With CO2 Capture
,”
Fuel
,
88
(
12
), pp.
2495
2506
.10.1016/j.fuel.2009.04.019
3.
Wolk
,
R. H.
, and
McDaniel
,
J.
,
1992
, “
High Efficiency Coal Fueled Power Generation
,”
Energy Convers. Manage.
,
33
(
5–8
), pp.
705
712
.10.1016/0196-8904(92)90075-8
4.
Tu
,
S. T.
, and
Sandström
,
R.
,
1994
, “
The Evaluation of Weldment Creep Strength Reduction Factors by Experimental and Numerical Simulations
,”
Int. J. Pressure Vessels Piping
,
57
(
3
), pp.
335
344
.10.1016/0308-0161(94)90039-6
5.
Saber
,
M.
,
Tanner
,
D. W. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2011
, “
Determination of Creep and Damage Properties for P92 at 675 °C
,”
J. Strain Anal. Eng. Des.
,
46
(
8
), pp.
842
851
.10.1177/0309324711413012
6.
Hyde
,
T. H.
,
Sun
,
W.
,
Becker
,
A. A.
, and
Williams
,
J. A.
,
2004
, “
Creep Properties and Failure Assessment of New and Fully Repaired P91 Pipe Welds at 923 K
,”
J. Mater.: Des. Appl.
,
218
(
3
), pp.
211
222
.10.1177/146442070421800305
7.
Parker
,
J. D.
, and
James
,
J. D.
,
1994
, “
Creep Behaviour of Miniature Disc Specimens of Low Alloy Steel
,”
Developments in a Progressing Technology
, Vol.
279
,
W. J.
Bees
, ed.,
ASME
,
New York
, pp.
167
172
.
8.
Hyde
,
T. H.
,
Sun
,
W.
, and
Becker
,
A. A.
,
1996
, “
Analysis of the Impression Creep Test Method Using a Rectangular Indenter for Determining the Creep Properties in Welds
,”
Int. J. Mech. Sci.
,
38
(
10
), pp.
1089
1102
.10.1016/0020-7403(95)00112-3
9.
Hyde
,
T. H.
, and
Sun
,
W.
,
2009
, “
A Novel, High-Sensitivity, Small Specimen Creep Test
,”
J. Strain Anal. Eng. Des.
,
44
(
3
), pp.
171
185
.10.1243/03093247JSA502
10.
Hyde
,
T. H.
,
Ali
,
B. S. M.
, and
Sun
,
W.
,
2013
, “
Interpretation of Small Ring Creep Tests Data
,”
J. Strain Anal. Eng. Des.
,
48
(
4
), pp.
269
278
.10.1177/0309324712468820
11.
Li
,
J. C. M.
,
2002
, “
Impression Creep and Other Localized Tests
,”
Mater. Sci. Eng. A
,
322
(
1–2
), pp.
23
42
.10.1016/S0921-5093(01)01116-9
12.
Mathew
,
M. D.
,
Naveena
, and
Vijayanand
,
D.
,
2012
, “
Impression Creep Behavior of 316LN Stainless Steel
,”
J. Mater. Eng. Perform.
,
22
(2), pp.
492
497
.10.1007/s11665-012-0290-4
13.
Dorner
,
D.
,
Roller
,
K.
,
Skrotzki
,
B.
,
Stöckhert
,
B.
, and
Eggeler
,
G.
,
2003
, “
Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing
,”
Mater. Sci. Eng.
,
357
(
1–2
), pp.
346
354
.10.1016/S0921-5093(03)00205-3
14.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
,
Yaghi
,
A.
,
Williams
,
J. A.
, and
Concari
,
S.
,
2006
, “
Determination of Creep Properties for P91 Weldment Materials at 625 °C
,”
5th International Conference on Mechanics and Materials in Design
, Porto, Portugal, July 24–26, J. F. Silva Gomes and S. A. Meguid, eds., INEGI, Balio, Portugal, pp. 165–166.
15.
Hyde
,
T. H.
,
Ali
,
B. S. M.
, and
Sun
,
W.
,
2012
, “
A Small Creep Test Specimen for Use in Determining Uniaxial Creep Rupture Data
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
, Ostrava, Czech Republic, October 2–4.
16.
Hyde
,
T. H.
,
Ali
,
B. S. M.
, and
Sun
,
W.
,
2013
, “
Analysis and Design of a Small, Two-Bar Creep Test Specimen
,”
ASME J. Eng. Mater. Technol.
,
135
(4), p.
0410061
.10.1115/1.4025192
17.
Hyde
,
C. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2012
, “
Small Ring Specimen Creep Testing of a Nickel-Based Superalloy
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
, Ostrava, Czech Republic, October 2–4.
18.
Hyde
,
T. H.
, and
Sun
,
W.
,
2010
, “
Some Considerations on Specimen Types for Small Sample Creep Tests
,”
Mater. High Temp.
,
27
(3), pp.
157
165
.
19.
Penny
,
R. K.
, and
Marriott
,
D. L.
,
1995
,
Design for Creep
,
Chapman & Hall
,
London
.
20.
Sun
,
W.
,
Hyde
,
T. H.
, and
Brett
,
S. J.
,
2012
, “
Use of Impression Creep Test Method for Determining Minimum Creep Strain Rate Data
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
, Ostrava, Czech Republic, October 2–4.
21.
Izaki
,
T.
,
Kobayashi
,
T.
,
Kusumoto
,
J.
, and
Kanaya
,
A.
,
2009
, “
A Creep Life Assessment Method for Boiler Pipes Using Small Punch Creep Test
,”
ASME Int. J. Pressure Vessels Piping
,
86
(
9
), pp.
637
642
.10.1016/j.ijpvp.2009.04.005
22.
Hyde
,
T. H.
,
Miroslav
,
S.
,
Sun
,
W.
, and
Hyde
,
C. J.
,
2010
, “
On the Interpretation of Results From Small Punch Creep Tests
,”
J. Strain Anal. Eng. Des.
,
45
(
3
), pp.
141
164
.10.1243/03093247JSA592
23.
Li
,
Y.
, and
Šturm,
R.
,
2008
, “
Determination of Creep Properties From Small Punch Test
,”
ASME
Paper No. PVP2008-61437.10.1115/PVP2008-61437
24.
Yang
,
S.
,
Zhou
,
J.
,
Ling
,
X.
, and
Yang
,
Z.
,
2012
, “
Effect of Geometric Factors and Processing Parameters on Plastic Damage of SUS304 Stainless Steel by Small Punch Test
,”
Mater. Des.
,
41
, pp.
447
452
.10.1016/j.matdes.2012.05.029
25.
Hou
,
F.
,
Xu
,
H.
,
Wang
,
Y.
, and
Zhang
,
L.
,
2013
, “
Determination of Creep Property of 1.25Cr0.5Mo Pearlitic Steels by Small Punch Test
,”
Eng. Failure Anal.
,
28
, pp.
215
221
.10.1016/j.engfailanal.2012.10.004
26.
Hyde
,
C. J.
,
Hyde
,
T. H.
,
Sun
,
W.
, and
Becker
,
A. A.
,
2010
, “
Damage Mechanics Based Predictions of Creep Crack Growth in 316 Stainless Steel
,”
Eng. Fract. Mech.
,
77
(
12
), pp.
2385
2402
.10.1016/j.engfracmech.2010.06.011
27.
Liu
,
Y.
, and
Murakami
,
S.
,
1998
, “
Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis
,”
JSME Int. J.
,
41
(
1
), pp.
57
65
.10.1299/jsmea.41.57
28.
Hyde
,
T. H.
,
Ali
,
B. S. M.
, and
Sun
,
W.
,
2013
, “
Small Two-Bar Specimen Creep Testing of (Bar-257) P91 Steel at 650 °C
,”
ASME J. Eng. Mater. Technol.
(submitted).
29.
Hyde
,
T. H.
,
Saber
,
M.
, and
Sun
,
W.
,
2010
, “
Testing and Modelling of Creep Crack Growth in Compact Tension Specimens From a P91 Weld at 650 °C
,”
Eng. Fract. Mech.
,
77
(
15
), pp.
2946
2957
.10.1016/j.engfracmech.2010.03.043
30.
Kachanov
,
L. M.
,
1958
, “
Time of the Fracture Process Under Creep Conditions
,” Izv. Akad. Nauk
SSSR
,
8
, pp.
26
31
(in Russian).
31.
Hyde
,
C. J.
,
2010
, “
Thermo-Mechanical Fatigue and Creep of High Temperature Materials
,” Ph.D. thesis, University of Nottingham, Nottingham, UK.
32.
DSS Simulia,
2010
,
ABAQUS 6.11-3 Standard User Manual
,
Dassault Systèmes, Inc.
,
Waltham, MA
.
33.
Sastry
,
D. H.
,
2005
, “
Impression Creep Technique: An Overview
,”
Mater. Sci. Eng. A
,
409
(
1–2
), pp.
67
75
.10.1016/j.msea.2005.05.110
You do not currently have access to this content.