The current work focuses on evaluation of the effective elastic properties of cementitious materials through a voxel based finite element analysis (FEA) approach. Voxels are generated for a heterogeneous cementitious material (type-I cement) consisting of typical volume fractions of various constituent phases from digital microstructures. The microstructure is modeled as a microscale representative volume element (RVE) in ABAQUS® to generate cubes several tens of microns in dimension and subjected to various prescribed deformation modes to generate the effective elastic tensor of the material. The RVE-calculated elastic properties such as moduli and Poisson's ratio are validated through an asymptotic expansion homogenization (AEH) and compared with rule of mixtures. Both periodic (PBC) and kinematic boundary conditions (KBC) are investigated to determine if the elastic properties are invariant due to boundary conditions. In addition, the method of “Windowing” was used to assess the randomness of the constituents and to validate how the isotropic elastic properties were determined. The average elastic properties obtained from the displacement based FEA of various locally anisotropic microsize cubes extracted from an RVE of size 100 × 100 × 100 μm showed that the overall RVE response was fully isotropic. The effects of domain size, degree of hydration (DOH), kinematic and periodic boundary conditions, domain sampling techniques, local anisotropy, particle size distribution (PSD), and random microstructure on elastic properties are studied.

References

References
1.
Garboczi
,
E.
, and
Bentz
,
D. P.
,
1996
, “
Multi-Scale Picture of Concrete and Its Transport Properties: Introduction for Non-Cement Researchers
,” NISTR 5900, BFRL, NIST, Gaithersburg, MD.
2.
Bernard
,
O.
,
Ulm
,
F. J.
, and
Lemarchand
,
E.
,
2003
, “
A Multiscale Micromechanics-Hydration Model for the Early-Age Elastic Properties of Cement-Based Materials,
Cem. Concr. Res.
,
33
(
9
), pp.
1923
1309
.10.1016/S0008-8846(03)00039-5
3.
Lee
,
J.
,
Xi
,
Y.
,
William
,
K.
, and
Jung
,
C.
,
2009
, “
A Multiscale Model for Modulus of Elasticity of Concrete at High Temperatures
,”
Cem. Concr. Res.
,
39
(
9
), pp.
754
762
.10.1016/j.cemconres.2009.05.008
4.
Wu
,
W.
,
Al-Ostaz
A.
,
Cheng
,
A.
, and
Chung
S.
,
2010
, “
Concrete as a Hierarchal Structural Composite Material,
Int. J. Multiscale Comput. Eng.
,
6
(
5
), pp.
585
595
.10.1615/IntJMultCompEng.v8.i6.30
5.
Tennis
,
P. D.
, and
Jennings
,
H. M.
,
2000
, “
A Model for Two Types of Calcium Silicate Hydrate in the Microstructure of Portland Cement Pastes
,”
Cem. Concr. Res.
,
30
(
6
), pp.
855
863
.10.1016/S0008-8846(00)00257-X
6.
Mondal
,
P.
,
Shah
,
S. P.
, and
Marks
,
L. D.
,
2008
, “
Nanoscale Characterization of Cementitious Materials,
ACI J. Mater.
,
105
(
2
), pp.
174
179
.
7.
Thomas
,
J. J.
,
Jennings
,
H. M.
, and
Allen
,
A. J.
,
1998
, “
The Surface Area of Cement Paste as Measured by Neutron Scattering: Evidence for Two C-S-H Morphologies,
Cem. Concr. Res.
,
28
(
6
), pp.
897
905
.10.1016/S0008-8846(98)00049-0
8.
Constantinides
,
G.
,
Ulm
,
F. J.
, and
Van Vliet
,
K.
,
2003
,“
On the Use of Nanoindentation for Cementitious Materials
,”
Mater. Struct.
,
36
, pp.
191
196
.10.1007/BF02479557
9.
Jennings
,
H. M.
,
Thomas
,
J. J.
,
Gevrenov
,
J. S.
,
Constantinides
,
G.
, and
Ulm
,
F. J.
,
2005
, “
Relating the Nanostructure of Concrete to Engineering Properties
,”
2nd International Symposium on Nanotechnology in Construction
, Bilbao, Spain, November 13–16.
10.
Haecker
,
C. J.
,
Garboczi
,
E. J.
,
Bullard
,
J. W.
,
Bohn
,
R. B.
,
Sun
,
Z.
,
Shah
,
S. P.
, and
Voigt
,
T.
,
2005
, “
Modeling the Linear Elastic Properties of Portland Cement Paste
,”
Cem. Concr. Res.
,
35
(
10
), pp.
1948
1960
.10.1016/j.cemconres.2005.05.001
11.
Richardson
,
I. G.
,
2008
, “
The Calcium Silicate Hydrates,
Cem. Concr. Res.
,
38
(
2
), pp.
137
158
.10.1016/j.cemconres.2007.11.005
12.
Pellenq
,
R. J.-M.
Lequeux
,
N.
, and
Vandamme
,
H.
,
2008
, “
Engineering the Bonding Scheme in C-S-H: The Iono-Covalent Framework
,”
Cem. Concr. Res.
,
38
(
2
), pp.
159
174
.10.1016/j.cemconres.2007.09.026
13.
Richardson
,
I. G.
,
2000
, “
The Nature of the Hydration Products in Hardened Cement Pastes
,”
Cem. Concr. Compos.
,
22
, pp.
97
113
.10.1016/S0958-9465(99)00036-0
14.
Murray
,
S. J.
,
2009
, “
Determination of Strength and Stiffness of Calcium Silicate Hydrate Using Molecular Dynamics
,” M.S. thesis, University of Arkansas, Fayetteville, AR.
15.
Lin
,
F.
,
2006
, “
Modeling of Hydration Kinetics and Shrinkage of Portland Cement Paste
,” Ph.D. thesis, Columbia University, New York.
16.
Smilauer
V.
,
2005
, “
Elastic Properties of Hydrating Cement Paste Determined From Hydration Models
,” Ph.D thesis, Czech Technical University, Prague.
17.
Allen
,
A. J.
,
Thomas
,
J. J.
, and
Jennings
,
H. M.
,
2007
, “
Composition and Density of Nanoscale Calcium–Silicate–Hydrate in Cement
,”
Nature Mater.
,
6
(
4
), pp.
311
316
.10.1038/nmat1871
18.
Bentz
,
D. P.
,
Jensenb
,
O. M.
,
Coats
,
A. M.
, and
Glasser
,
F. P.
,
2000
, “
Influence of Silica Fume on Diffusivity in Cement-Based Materials I. Experimental and Computer Modeling Studies on Cement Pastes,
Cem. Concr. Res.
,
30
(
6
), pp.
953
962
.10.1016/S0008-8846(00)00264-7
19.
Chandler
,
M. Q.
,
Peters
,
J. F.
, and
Pelessone
,
D.
,
2012
, “
Modeling Nanoindentation of Calcium Silicate Hydrate
,”
Journal of the Transportation Research Board
, No. 2142, Transportation Research Board of the National Academies, Washington, DC, pp.
67
74
.
20.
Beaudoin
,
J. J.
,
Gu
,
P.
, and
Myers
,
R. E.
,
1998
, “
The Fracture Of C-S-H And C-S-H/Ch Mixtures,
Cem. Concr. Res.
,
28
(
3
), pp.
341
347
.10.1016/S0008-8846(97)00268-8
21.
Jennings
,
H. M.
,
Bullard
,
J. W.
,
Thomas
,
J. J.
,
Andrade
,
J. E.
,
Chen
,
J. J.
, and
Scherer
,
G. W.
,
2008
, “
Characterization and Modeling of Pores and Surfaces in Cement Paste: Correlations to Processing and Properties
,”
J. Adv. Concr. Technol.
,
6
(
1
), pp.
5
29
.10.3151/jact.6.5
22.
Chandler
,
M. Q.
,
Peters
,
J. F.
, and
Pelessone
,
D.
, “
Modeling Nanomechanical Behavior of Calcium-Silicate-Hydrate
,” U.S. Army ERDC, Vicksburg, MS, Final Report No. ERDC/GSL TR-12-30.
23.
Moser
,
R. D.
,
Allison
,
P. G.
,
Chandler
,
M. Q.
, “
Investigation of High-Strain Rate Damage in Reactive Powder Concretes Using Instrumented Indentation Techniques
,”
4th International Symposium on Nanotechnology in Construction
(NICOM 4), Agios Nikolaos, Greece, May 20-22.
24.
Sorelli
,
L.
,
Constantinides
,
G.
,
Ulm
,
F. J.
, and
Toutlemonde
,
F.
,
2008
, “
The Nano-Mechanical Signature of Ultra High Performance Concrete by Statistical Nanoindentation Techniques,
Cem. Concr. Res.
,
38
(
12
), pp.
1447
1456
.10.1016/j.cemconres.2008.09.002
25.
Dolado
,
J. S.
, and
Breugel
,
K. V.
,
2011
, “
Recent Advances in Modeling for Cementitious Materials
,”
Cem. Concr. Res.
,
41
(
7
), pp.
711
726
.10.1016/j.cemconres.2011.03.014
26.
Kamali-Bernard
,
S.
,
Bernard
,
F.
, and
Prince
,
W.
,
2009
, “
Computer Modelling of Tritiated Water Diffusion Test for Cement Based Materials
,”
J. Com. Mat. Sci.
,
45
(
2
), pp.
528
535
.10.1016/j.commatsci.2008.11.018
27.
Meier
,
H. A.
,
Kuhl
,
E.
, and
Steinmann
,
P.
,
2008
, “
A Note on the Generation of Periodic Granular Microstructures Based on Grain Size Distributions
,”
Int. J. Numer. Anal. Meth. Geomech.
,
32
(
5
), pp.
509
522
.10.1002/nag.635
28.
Šmilauer
,
V.
,
Hlaváček
,
P.
,
Škvára
,
F.
,
Šulc
,
R.
,
Kopecký
,
L.
, and
Němeček
,
J.
,
2011
, “
Micromechanical Multiscale Model for Alkali Activation of Fly Ash and Metakaolin
,”
J. Mater. Sci.
,
46
(
20
), pp.
6545
6555
.10.1007/s10853-011-5601-x
29.
Andrade
,
J. E.
,
Fonseca
,
P. C.
, and
Jennings
,
H. M.
,
2011
, “
A Nanoscale Numerical Model of Calcium Silicate Hydrate,
Mech. Mater.
,
43
(
8
), pp.
408
419
.10.1016/j.mechmat.2011.05.004
30.
Shahsavari
,
R.
,
Pellenq
,
R. J.-M.
, and
Ulm
,
F. J.
,
2011
, “
Empirical Force Fields for Complex Hydrated Calcio Silicate Layered Materials
,”
Phys. Chem. Chem. Phys.
,
13
(
3
), pp.
1002
1011
.10.1039/c0cp00516a
31.
Ulm
,
F. J.
,
Pellenq
,
R. J.-M.
, and
Vandamme
,
M.
,
2010
, “
Concrete: From Atoms to Concrete Structures
,”
Computational Modelling of Concrete Structures
, N. Bicanic, R. de Borst, H. Mang, and G. Meschke, eds., CRC Press, Boca Raton, FL, pp.
69
.
32.
Pellenq
,
R. J. M.
,
Kushima
,
A.
,
Shahsavari
,
R.
,
Van Vlietd
,
K. J.
,
Buehlerb
,
M. J.
,
Yipc
,
S.
, and
Ulm
,
F.-J.
,
2009
, “
A Realistic Molecular Model of Cement Hydrates
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
38
), pp.
16102
16107
.10.1073/pnas.0902180106
33.
Smilauer
,
V.
, and
Krejci
,
T.
,
2009
,“
Multiscale Model for Temperature Distribution in Hydrating Concrete Multiscale Model for Temperature Distribution in Hydrating Concrete
,”
Int. J. Multiscale Comp. Eng.
,
7
(
2
), pp.
135
151
.10.1615/IntJMultCompEng.v7.i2.50
34.
Maekawa
,
K.
,
Ishida
,
T.
, and
Kishi
,
T.
,
2003
, “
Multi-Scale Modeling of Concrete Performance: Integrated Material and Structural Mechanics,
J. Adv. Concr. Technol.
,
1
(
2
), pp.
91
126
.10.3151/jact.1.91
35.
Ye
,
G.
,
van Breugel
,
K.
, and
Fraaij
,
A. L. A.
,
2002
, “
Three-Dimensional Microstructure Analysis of Numerically Simulated Cementitious Materials
,”
Cem. Concr. Res.
,
33
(
3
), pp.
215
222
.10.1016/S0008-8846(02)00889-X
36.
Princigallo
,
A.
,
Lura
,
P.
,
Levita
,
G.
, and
van Breugel
,
K.
,
2003
, “
Early Development of Properties in a Cement Paste: A Numerical and Experimental Study,
Cem. Concr. Res.
,
33
(
7
), pp.
1013
1020
.10.1016/S0008-8846(03)00002-4
37.
Grondin
,
F.
,
Dumontet
,
H.
,
Ben Hamida
,
A.
,
Mounajed
,
G.
, and
Boussa
,
H.
,
2007
, “
Multi-Scales Modelling for the Behaviour of Damaged Concrete
,”
Cem. Concr. Res.
,
37
(
10
), pp.
1453
1462
.10.1016/j.cemconres.2007.05.012
38.
Yeong
,
C. L. Y.
, and
Torquato
,
S.
,
1998
, “
Reconstructing Random Media. II. Three-Dimensional Media From Two-Dimensional Cuts,
Phys. Rev. E
,
58
(
1
), pp.
224
233
.10.1103/PhysRevE.58.224
39.
Bishnoi
,
S.
,
2008
, “
Vector Modelling of Hydrating Cement Microstructure and Kinetics
,” Ph. D. thesis No. 4606, École Polytechnique Fédérale De Lausanne, Lausanne, Switzerland.
40.
Wu
,
W.
,
Al-Ostaz
,
A. M.
,
Cheng
,
A. H.-D.
, and
Song
,
C. R.
,
2011
, “
Computation of Elastic Properties of Portland Cement Using Molecular Dynamics
,”
J. Nanomech. Micromech.
,
1
(
2
), pp.
84
90
.10.1061/(ASCE)NM.2153-5477.0000026
41.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids.
,
11
, pp.
357
372
.10.1016/0022-5096(63)90036-X
42.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids.
,
11
, pp.
127
140
.10.1016/0022-5096(63)90060-7
43.
Willis
,
J.
,
1981
, “
Variational and Related Methods for the Overall Properties of Composites
,”
Adv. Appl. Mech.
,
21
, pp.
1
78
.10.1016/S0065-2156(08)70330-2
44.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
2nd ed.
,
Elsevier
,
Amsterdam
.
45.
Sab
,
K.
,
1992
, “
On the Homogenization and the Simulation of Random Materials
,”
Eur. J. Mech. Solids.
,
11
, pp.
585
607
.
46.
Huet
,
C.
,
1999
, “
Coupled Size and Boundary-Condition Effects in Viscoelastic Heterogeneous and Composite Bodies
,”
Mech. Mater.
,
31
(
12
), pp.
787
829
.10.1016/S0167-6636(99)00038-1
47.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct
.,
40
(
13–14
), pp.
3647
3679
.10.1016/S0020-7683(03)00143-4
48.
Gitman
,
I. M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2007
, “
Representative Volume: Existence and Size Determination
,”
Eng. Fract. Mech.
,
74
(
16
), pp.
2518
2534
.10.1016/j.engfracmech.2006.12.021
49.
Bentz
,
D. P.
,
2005
, “
CEMHYD3D: A Three Dimensional Cement Hydration and Microstructure Development Package
,” Version 3.0, NISTIR7232, U.S. Department of Commerce.
50.
Bonen
,
D.
, and
Diamond
,
S.
,
1991
, “
Application of Image Analysis to a Comparison of Ball Mill and High Pressure Roller Mill Ground Cement
,”
Proceedings of 13th International Conference Cement Microscopy
, Tampa, FL, April 8–11, p.
101
.
51.
Bernard
,
F.
,
Kamali-Bernard
,
S.
, and
Prince
,
W.
,
2008
, “
3D Multi-Scale Modeling of Mechanical Behaviour of Sound and Leached Mortar
,”
Cem. Concr. Res.
,
38
(
4
) pp.
449
458
.10.1016/j.cemconres.2007.11.015
52.
Charmrova
,
R.
,
2010
, “
Modelling and Measurement of Elastic Properties of Hydrating Cement Paste
,” Ph.D. thesis No. 4606, École Polytechnique Fédérale De Lausanne, Laussanne, Switzerland.
53.
Kurkuri
,
S.
,
2005
, “
Homogenization of Damaged Concrete Meso-Structures Using Representative Volume Elements—Implementation and Application to Slang
,” Master thesis, Institute of Structure Mechanics, Bauhaus–University Weimar, Weimar, Germany.
54.
Ren
,
Z. Y.
, and
Zheng
,
Q. S.
,
2002
, “
A Quantitative Study of Minimum Sizes of Representative Volume Elements of Cubic Polycrystals—Numerical Experiments
,”
J. Mech. Phys. Solids.
,
50
(
4
), pp.
881
893
.10.1016/S0022-5096(01)00102-8
55.
Šmilauer
,
V.
, and
Bittnar
,
Z.
,
2004
, “
Effects of Representative Cube Size on the Simulation of Portland Cement Hydration in CEMHYD3D Model
,”
5th International Doctoral Symposium in Civil Engineering
, Delft, Netherlands, June 16–19, J. Blaauwendraad, T. Scarpas, B. Snijder, and J. Walraven, eds., A. A. Balkema, Leiden, Netherlands, pp.
581
587
.
56.
Hain
,
M.
, and
Wrigers
,
P.
,
2005
, “
Simulating the Microstructure of Cement Based Construction Materials
Proc. App. Math. Mech.
,
5
, pp.
401
402
.10.1002/pamm.200510177
57.
Barbero
,
E. J.
,
2008
,
Finite Element Analysis of Composite Materials
,
1st ed.
,
CRC Press
,
Boca Raton
, FL.
58.
Chung
,
P. W.
,
Tamma
,
K. K.
, and
Namburu
,
R. R.
,
2001
, “
Asymptotic Expansion Homogenization for Heterogeneous Media: Computational Issues and Applications
,
Compos. Part A
,
32
(
9
), pp.
1291
1301
.
59.
Ramsey
,
J. J.
, and
Chung
,
P. W.
, “Massively Parallel Implementation of Asymptotic Expansion Homogenization for Complex Microstructures,” Army Research Lab, Aberdeen Proving Ground, MD (unpublished).
60.
Kanit
,
T.
,
N'Guyen
,
F.
,
Forest
,
S.
,
Jeulin
,
D.
,
Reed
,
M.
, and
Singleton
,
S.
,
2006
, “
Apparent and Effective Physical Properties of Heterogeneous Materials: Representativity of Samples of Two Materials From Food Industry
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
3960
3982
.10.1016/j.cma.2005.07.022
61.
Šmilauer
,
V.
, and
Bittnar
,
Z.
,
2006
, “
Microstructure-Based Micromechanical Prediction of Elastic Properties in Hydrating Cement Paste
,”
Cem. Concr. Res.
,
36
, pp.
1708
1718
.10.1016/j.cemconres.2006.05.014
62.
Voigt
,
W.
,
1966
, Lehrbuch der Kristallphysik: mit Ausschluss der Kristalloptik. New York, Johnson Reprint.
63.
Reuss
,
A.
, and
Angew
,
Z.
,
1929
, “
Berchung der fiessgrenze von mischkristallen auf grund der plastizit atsbedingung f¨ur einkristalle
,”
Math. Mech.
,
9
, pp.
49
58
.
64.
Hashin
,
Z.
, 1960, “
Elastic Moduli of Heterogeneous Materials
,” Technical Report No. 9, Submitted to ONR, Contract No. 1866(02), September.
65.
Wu
,
W.
,
Al-Ostaz
,
A.
,
Gladden
,
J.
,
Cheng
,
A. H.-D.
, and
Li
,
G.
,
2010
, “
Measurement of Mechanical Properties of Hydrated Cement Paste Using Resonant Ultrasound Spectroscopy,
J. ASTM Int.
,
7
(
5
), p. JAI102657.10.1520/JAI102657
66.
Kamali
,
S.
,
Moranville
,
M.
,
Garboczi
,
E. G.
,
Pren
,
S.
, and
Grard
,
B.
,
2004
, “
Hydrate Dissolution Influence on the Young's Modulus of Cement Paste
,”
5th International Conference of Fracture Mechanics of Concrete Structures
, Vail, CO, April 12–16.
67.
Haeckerd
,
C.-J.
,
Garboczia
,
E. J.
,
Bullarda
,
J. W.
,
Bohnb
,
R. B.
,
Sunc
,
Z.
,
Shahc
,
S. P.
, and
Voigt
,
T.
,
2005
, “
Modeling the Linear Elastic Properties of Portland Cement Paste
,”
Cem. Concr. Res.
,
35
, pp.
1948
1960
.10.1016/j.cemconres.2005.05.001
68.
Lam
,
L.
,
Wong
,
Y. L.
, and
Poon
,
C. S.
,
2000
, “
Degree of Hydration and Gel/Space Ratio of High-Volume Fly Ash/Cement Systems
,”
Cem. Concr. Res.
,
30
, pp.
747
756
.10.1016/S0008-8846(00)00213-1
69.
Bentz
,
D. P.
,
1997
, “
Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development
,”
J. Am. Ceram. Soc.
,
80
(
1
), pp.
3
21
.10.1111/j.1151-2916.1997.tb02785.x
You do not currently have access to this content.