The experimental stress–strain data from isothermal hot compression tests, in a wide range of temperatures (350–500 °C) and strain rates (0.005–0.5 s−1), were employed to develop constitutive equations in a commercially pure aluminum (AA1070). The effects of temperature and strain rate on the hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. The results show that the hardening rate and flow stress are evidently affected by both deformation temperature and strain rate. The power law, exponential, and hyperbolic sinusoidal types of Zener–Hollomon equations were used to determine the hot deformation behavior of AA1070. The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. So the proposed deformation constitutive equations can give an accurate and precise estimate of the flow stress for AA1070, which means it can be used for numerical simulation of hot forming processes and for choosing proper forming parameters in engineering practice accurately.

References

References
1.
Lange
,
K.
,
1985
,
Handbook of Metal Forming
,
McGraw-Hill
,
New York
.
2.
Totten
,
G. E.
, and
MacKenzie
,
D. S.
,
2003
,
Handbook of Aluminium. Physical Metallurgy and Processes
, Vol.
1
,
Marcel Dekker
,
New York
.
3.
Lin
,
Y. C.
,
Xia
,
Y.-C.
,
Xiao-Min
,
C.
, and
Ming-Song
,
C.
,
2010
, “
Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate
,”
Comp. Mater. Sci.
,
50
, pp.
227
233
.10.1016/j.commatsci.2010.08.003
4.
Mandal
,
S.
,
Rakesh
,
V.
,
Sivaprasad
,
P. V.
, and
Kasiviswanathan
,
K. V.
,
2009
, “
Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
,
500
, pp.
114
121
.10.1016/j.msea.2008.09.019
5.
Lin
,
Y. C.
, and
Xiao-Min
,
C.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater Des.
,
32
(4),
1733
1759
.10.1016/j.matdes.2010.11.048
6.
Jonas
,
J.
,
Sellars
,
C. M.
, and
Tegart
,
W. J. McG.
,
1969
, “
Strength and Structure Under Hot Working Conditions
,”
Int. Metall. Rev.
,
14
(1), pp.
1
24
.10.1179/095066069790138056
7.
Lin
,
Y. C.
,
Chen
,
M. S.
, and
Zhong
,
J.
,
2008
, “
Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel
,”
J. Mater. Process. Technol.
,
205
, pp.
308
315
.10.1016/j.jmatprotec.2007.11.113
8.
McQueen
,
H. J.
, and
Ryan
,
N. D.
,
2002
, “
Constitutive Analysis in Hot Working
,”
Mater. Sci. Eng. A
,
322
(1-2), pp.
43
63
.10.1016/S0921-5093(01)01117-0
9.
Takuda
,
H.
,
Fujimoto
,
H.
, and
Hatta
,
N.
,
1998
, “
Modelling on Flow Stress of Mg–Al–Zn Alloys at Elevated Temperatures
,”
Mater. Process. Technol.
,
80/81
, pp.
513
516
.10.1016/S0924-0136(98)00154-X
10.
Lee
,
W. S.
, and
Lin
,
M. T.
,
1997
, “
The Effects of Strain Rate and Temperature on the Compressive Deformation Behaviour of Ti6Al4V Alloy
,”
Mater. Process. Technol.
,
71
, pp.
235
246
.10.1016/S0924-0136(97)00080-0
11.
Zhan
,
M. Y.
,
Chen
,
Z. H.
,
Zhang
,
H.
, and
Xia
,
W. J.
,
2006
, “Flow Stress Behavior of Porous FVS0812 Aluminum Alloy During Hot-Compression,”
Mech. Res. Commun.
,
3
, pp.
508
514
.10.1016/j.mechrescom.2005.05.008
12.
Shi
,
H.
,
McLaren
,
A. J.
,
Sellars
,
C. M.
,
Shahani
,
R.
, and
Bolingbroke
,
R.
,
1997
, “
Hot Plane Strain Compression Testing in Al-1Mg
,”
Mater. Sci. Technol.
,
13
, pp.
210
216
.10.1179/026708397790302421
13.
Sellars
,
C. M.
, and
McTegart
,
W. J.
,
1996
, “
On the Mechanism of Hot Deformation
,”
Acta Metall.
,
14
(9), pp.
1136
1138
.10.1016/0001-6160(66)90207-0
14.
Mirzadeh
,
H.
,
Najafizadeh
,
A.
, and
Moazeney
,
M.
,
2009
, “Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test,”
Metall. Mater. Trans. A
,
40
, pp.
2950
2958
.10.1007/s11661-009-0029-5
15.
Verlinden
,
B.
,
Driver
,
J.
,
Samajdar
,
I.
, and
Doherty
,
D.
,
2007
,
Thermo-Mechanical Processing of Metallic Materials
,
1st ed.
,
Elsevier
, Amsterdam.
16.
Stewart
,
G. R.
,
Jonas
,
J. J.
, and
Montheillet
,
F.
,
2004
, “
Kinetics and Critical Conditions for the Initiation of Dynamic Recrystallization in 304 Stainless Steel
,”
ISIJ Int.
,
44/9
, pp.
1581
1589
.10.2355/isijinternational.44.1581
17.
Brown
,
S. B.
,
Kim
,
K. H.
, and
Anand
,
L.
,
1989
, “
An Internal Variable Constitutive Model for Hot Working of Metals
,”
Int. J. Plast.
,
5
, pp.
95
130
.10.1016/0749-6419(89)90025-9
18.
Zener
,
C.
, and
Hollomon
,
H.
,
1944
, “
Effect of Strain-Rate Up on the Plastic Flow of Steel
,”
J Appl. Phys.
,
15
, pp.
22
27
.10.1063/1.1707363
19.
Chen
,
Z. Y.
,
Xu
,
S. Q.
, and
Dong
,
X. H.
,
2008
, “
Deformation Behavior of AA6063 Aluminum Alloy After Removing Friction Effect Under Hot Working Conditions
,”
Acta Metall. Sin.
,
21
(6), pp.
451
458
.10.1016/S1006-7191(09)60008-9
20.
Yang
,
H.
,
Li
,
Z. H.
, and
Zhang
,
Z. L.
,
2006
, “
Investigation on Zener–Hollomon Parameter in the Warm-Hot Deformation Behavior of 20CrMnTi
,”
J. Zhejiang Univ., Sci.
,
7
, pp.
1453
1460
.10.1631/jzus.2006.A1453
21.
Sakai
,
T.
,
1995
, “
Dynamic Recrystallization Microstructures Under Hot Working Conditions
,”
Mater. Process. Technol.
,
53
, pp.
349
361
.10.1016/0924-0136(95)01992-N
You do not currently have access to this content.