This work extends the generalized plasticity model for structural metals under cyclic loading proposed by Lubliner et al. (1993, “A New Model of Generalized Plasticity and its Numerical Implementation,” Int. J. Solids Struct., 22, pp. 3171–3184) to incorporate temperature-dependence into the elastic-plastic response. Proposed flow equations satisfy the Clausius–Duhem inequality through a thermodynamically consistent energy functional and retain key aspects of conventional plasticity models: Mises yield surface, normal plastic flow, and additive decomposition of strain. Uniaxial specialization of the 3D rate equations leads to a simple graphical method to estimate model properties. The 3D integration scheme based on backward Euler discretization leads to a scalar quadratic expression to determine the plastic strain rate multiplier and has a symmetric algorithmic tangent matrix. Both properties of the integration lead to a computationally efficient implementation especially suited to large-scale, finite element analyses. In comparison studies using experimental data from a Cottrell–Stokes test, the modified rate equations for the generalized plasticity model capture a thermally activated increase in the flow stress.

References

References
1.
Lubliner
,
J.
,
1974
, “
A Simple Theory of Plasticity
,”
Int. J. Solids Struct.
,
10
, pp.
313
319
.10.1016/0020-7683(74)90080-8
2.
Eisenberg
,
M. A.
, and
Phillips
,
A.
,
1971
, “
A Theory of Plasticity With Non-Coincident Yield and Loading Surfaces
,”
Acta Mech.
,
11
, pp.
247
260
.10.1007/BF01176559
3.
Lubliner
,
J.
,
1975
, “
On Loading, Yield, and Quasi-Yield Hypersurfaces in Plasticity Theory
,”
Int. J. Solids Struct.
,
11
, pp.
1011
1015
.10.1016/0020-7683(75)90043-8
4.
Lubliner
,
J.
,
1980
, “
An Axiomatic Model of Rate-Independent Plasticity
,”
Int. J. Solids Struct.
,
14
, pp.
709
713
.10.1016/0020-7683(80)90012-8
5.
Lubliner
,
J.
,
1984
, “
A Maximum-Dissipation Principle in Generalized Plasticity
,”
Acta Mech.
52
, pp.
225
237
.10.1007/BF01179618
6.
Lubliner
,
J.
,
1987
, “
On Uniqueness of Solutions in Generalized Plasticity at Infinitesimal Deformation
,”
Int. J. Solids Struct.
,
23
, pp.
261
266
.10.1016/0020-7683(87)90059-X
7.
Lubliner
,
J.
,
1987
, “
Non-Isothermal Generalized Plasticity
,”
Thermomechanical Couplings in Solids
,
H. D.
Bui
and
Q. S.
Nguyen
, eds., Elsevier Science, New York, pp.
121
133
.
8.
Lubliner
,
J.
,
Taylor
,
R. L.
, and
Auricchio
,
F.
,
1993
, “
A New Model of Generalized Plasticity and Its Numerical Implementation
,”
Int. J. Solids Struct.
,
22
, pp.
3171
3184
.10.1016/0020-7683(93)90146-X
9.
Auricchio
,
F.
, and
Taylor
,
R. L.
,
1995
, “
Two Material Models for Cyclic Plasticity: Nonlinear Kinematic Hardening and Generalized Plasticity
,”
Int. J. Plast.
,
11
, pp.
65
98
.10.1016/0749-6419(94)00039-5
10.
Auricchio
,
F.
,
1997
, “
A Viscoplasticity Constitutive Equation Bounded Between Two Generalized Plasticity Models
,”
Int. J. Plast.
,
13
, pp.
697
721
.10.1016/S0749-6419(97)00020-X
11.
Auricchio
,
F.
, and
Taylor
,
R.
,
1994
, “
A Generalized Visco-Plasticity Model and Its Algorithmic Implementation
,”
Comput. Struct.
,
53
, pp.
637
647
.10.1016/0045-7949(94)90107-4
12.
Auricchio
,
F.
, and
Petrini
,
L.
,
2004
, “
A Three-Dimensional Model Describing Stress-Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
807
836
.10.1002/nme.1086
13.
Auricchio
,
F.
,
Reali
,
A.
, and
Stefanelli
,
U.
,
2007
, “
A Three-Dimensional Model Describing Stress-Induced Solid Phase Transformation With Permanent Inelasticity
,”
Int. J. Plast.
,
23
, pp.
207
226
.10.1016/j.ijplas.2006.02.012
14.
Auricchio
,
F.
,
Taylor
,
R.
, and
Lubliner
,
J.
,
1997
, “
Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
146
, pp.
281
312
.10.1016/S0045-7825(96)01232-7
15.
Lubliner
,
J.
, and
Auricchio
,
F.
,
1996
, “
Generalized Plasticity and Shape-Memory Alloys
,”
Int. J. Solids Struct.
,
33
, pp.
991
1003
.10.1016/0020-7683(95)00082-8
16.
McDowell
,
D. L.
,
1992
, “
A Nonlinear Kinematic Hardening Theory for Cyclic Thermoplasticity and Thermoviscoplasticity
,”
Int. J. Plast.
8
, pp.
693
728
.10.1016/0749-6419(92)90024-7
17.
Cassenti
,
B. N.
,
1983
, “
Research and Development Program for the Development of Advanced Time-Temperature Dependent Constitutive Relationships—Vol. 1—Theoretical Discussion
,” Contractor Final Report No. NASA CR-168191.
18.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1985
, “
Consistent Tangent Operators for Rate-Independent Elastoplasticity
,”
Comput. Methods Appl. Mech. Eng.
,
48
, pp.
101
118
.10.1016/0045-7825(85)90070-2
19.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
, pp.
149
188
.10.1016/0749-6419(86)90010-0
20.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
, pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
21.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
, “
On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept
,”
ASME J. Pressure Vessel Technol.
,
105
, pp.
153
158
.10.1115/1.3264257
22.
Ohno
,
N.
, and
Wang
,
J.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
, pp.
375
390
.10.1016/0749-6419(93)90042-O
23.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
, pp.
720
725
.10.1115/1.2823355
24.
Frederick
,
C. O.
, and
Armstrong
,
P. J.
,
2007
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High. Temp.
,
24
, pp.
1
26
.10.3184/096034007X207589
25.
Ohno
,
N.
, and
Wang
,
J.
,
1992
, “
Nonisothermal Constitutive Modeling of Inelasticity Based on Bounding Surface
,”
Nucl. Eng. Des.
,
133
, pp.
369
281
.10.1016/0029-5493(92)90163-P
26.
Cottrell
,
A. H.
, and
Stokes
,
R. J.
,
1955
, “
Effects of Temperature on the Plastic Properties of Aluminum Crystals
,”
Proc. R. Soc. London, Ser. A
,
233
, pp.
17
34
.10.1098/rspa.1955.0243
27.
Picu
,
R. C.
,
Vincze
,
G. T.
, and
Gracio
,
J. J.
,
2011
, “
Deformation and Microstructure-Independent Cottrell–Stokes Ratio in Commercial Al Alloys
,”
Int. J. Plast.
,
27
, pp.
1045
1054
.10.1016/j.ijplas.2010.11.001
28.
Swaminathan
,
B.
,
Lambros
,
J.
, and
Sehitoglu
,
H.
, “
Mechanical Response of a Nickel Superalloy Under Thermal and Mechanical Cyclic: Uniaxial and Biaxial Stress States
,”
J. Strain Anal. Eng. Des.
(in press).
You do not currently have access to this content.