Accurate modeling of workpiece material behavior in machining is critical to analyze and design a process. The workpiece material behavior in the machining process involves dynamic flow stress and damage/fracture behavior, which are very difficult to be determined. In this study, the extended split Hopkinson pressure bar (SHPB) test is conducted to determine the dynamic flow stress curves of 7075-T651 aluminum alloy, which enables the strain, strain rate and the temperature obtained in the test to approach that in the cutting condition. A damage criterion under the typical stress state of orthogonal cutting is established to reflect the material damage initiation in primary shear zone. The damage criterion parameters of 7075-T651 alloy are determined by comparing the numerical and experimental results of the proposed inner high-pressure piercing fracture test. The orthogonal cutting test and simulation of 7075-T651 alloy are conducted. It is demonstrated that the determined flow stress and the established damage criterion produces realistic process outputs in agreement with experimental results.

References

References
1.
Denkena
,
B.
,
Boehnke
,
D.
, and
de León
,
L.
,
2008
, “
Machining Induced Residual Stress in Structural Aluminum Parts
,”
Prod. Eng.
,
2
, pp.
247
253
.10.1007/s11740-008-0097-1
2.
Lee
,
W.-S.
,
Sue
,
W.-C.
,
Lin
,
C.-F.
, and
Wu
,
C.-J.
,
2000
, “
The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
100
, pp.
116
122
.10.1016/S0924-0136(99)00465-3
3.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
,
2001
, “
Process Modeling in Machining. Part I. Determination of Flow Stress Data
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
1511
1534
.10.1016/S0890-6955(01)00016-5
4.
Guo
,
Y. B.
,
2003
, “
An Integral Method to Determine the Mechanical Behavior of Materials in Metal Cutting
,”
J. Mater. Process. Technol.
,
142
, pp.
72
81
.10.1016/S0924-0136(03)00462-X
5.
Özel
,
T.
, and
Zeren
,
E.
,
2006
, “
A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining
,”
J. Manuf. Sci. Eng.
,
128
, pp.
119
129
.10.1115/1.2118767
6.
El-Magd
,
E.
, and
Abouridouane
,
M.
,
2006
, “
Characterization, Modelling and Simulation of Deformation and Fracture Behaviour of the Light-Weight Wrought Alloys Under High Strain Rate Loading
,”
Int. J. Impact Eng.
,
32
, pp.
741
758
.10.1016/j.ijimpeng.2005.03.008
7.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
, pp.
189
193
.10.1115/1.3629585
8.
Van Luttervelt
,
C. A.
,
1997
, “
The Split Shear Zone-Mechanism of Chip Segmentation
,”
CIRP Ann.-Manuf. Technol.
25
(
1
), pp.
33
37
.
9.
Nakayama
,
K.
,
Arai
,
M.
, and
Kanda
,
T.
,
1988
,
Machining Characteristics of Hard Materials
,”
CIRP Ann.-Manuf. Technol.
,
37
(
1
), pp.
89
92
.10.1016/S0007-8506(07)61592-3
10.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti-6Al-4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
1055
1070
.10.1016/S0890-6955(00)00096-1
11.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J.-F.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminum Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
1187
1197
.10.1016/j.ijmachtools.2008.03.013
12.
Guo
,
Y. B.
,
Wen
,
Q.
, and
Woodbury
,
K. A.
,
2006
, “
Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
,”
J. Manuf. Sci. Eng.
,
128
, pp.
749
759
.10.1115/1.2193549
13.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
, pp.
773
782
.10.1016/0008-8846(76)90007-7
14.
Riddle
,
R. A.
,
Streit
,
R. D.
, and
Finnie
,
I.
,
1988
, “
The Failure of Aluminum Compact Shear Specimens Under Mixed-Mode Loading
,”
Proceedings of Fracture Mechanics: Eighteenth Symposium (ASTM STP 945), Boulder, CO, June 25–27
,
D. T.
Read
and
R. P.
Reed
, eds., American Society for Testing and Materials, Philadelphia, Paper No.
STP23237S
, pp.
118
133
.10.1520/STP23237S
15.
Wu
,
Z.-G.
,
Li
,
S.-H.
,
Zhang
,
W.-G.
, and
Wang
,
W.-R.
,
2010
, “
Ductile Fracture Simulation of Hydropiercing Process Based on Various Criteria in 3D Modeling
,”
Mater. Des.
,
31
, pp.
3661
3671
.10.1016/j.matdes.2010.02.046
16.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanisms of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
, pp.
15
34
.10.1016/0043-1648(82)90113-2
17.
Hou
,
B.
,
Wu
,
Y. F.
,
Li
,
S. H.
,
Lin
,
Z.-Q.
, and
Yu
,
Z.-Q.
,
2011
, “
A Comparative Study of Different Chip Separation Approaches for Numerical Modeling of Orthogonal Cutting
,”
Proceedings of SimulTech'2011
, Noordwijkerhout, The Netherlands, July 29–31, pp.
458
464
.
You do not currently have access to this content.