A microstructure-based internal state variable (ISV) plasticity-damage model was used to model the mechanical behavior of a porous FC-0205 steel alloy that was procured via a powder metal (PM) process. Because the porosity was very high and the nearest neighbor distance (NND) for the pores was close, a new pore coalescence ISV equation was introduced that allows for enhanced pore growth from the concentrated pores. This coalescence equation effectively includes the local stress interaction within the interpore ligament distance between pores and is physically motivated with these highly porous powder metals. Monotonic tension, compression, and torsion tests were performed at various porosity levels and temperatures to obtain the set of plasticity and damage constants required for model calibration. Once the model calibration was achieved, then tension tests on two different notch radii Bridgman specimens were undertaken to study the damage-triaxiality dependence for model validation. Fracture surface analysis was performed using scanning electron microscopy (SEM) to quantify the pore sizes of the different specimens. The validated model was then used to predict the component performance of an automotive PM bearing cap. Although the microstructure-sensitive ISV model has been employed for this particular FC-0205 steel, the model is general enough to be applied to other metal alloys as well.

References

References
1.
Hammi
,
Y.
,
Stone
,
T. Y.
, and
Horstemeyer
,
M. F.
,
2005
, “
Constitutive Modeling of Metal Powder Behavior During Compaction
,”
SAE
Technical Paper No. 2005-01-0632.10.4271/2005-01-0632
2.
Davison
,
L.
,
Stevens
,
A. L.
, and
Kipp
,
M. E.
,
1977
, “
Theory of Spall Damage Accumulation in Ductile Metals
,”
J. Mech. Phys. Solids
,
25
(
1
), pp.
11
28
.10.1016/0022-5096(77)90017-5
3.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
4.
Gurson
,
A. L.
,
1977
, “
Porous Rigid-Plastic Materials Containing Rigid Inclusions-Yield Function, Plastic Potential, and Void Nucleation
,” Proceedings of the Fourth International Conference on Fracture (ICF4), Waterloo, Canada, June 19, Vol. 2A, D. M. R. Taplin, ed., University of Waterloo Press, Waterloo, ON, Canada, pp.
357
364
.
5.
Leblond
,
J. B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1995
, “
An Improved Gurson-Type Model for Hardenable Ductile Metals
,”
Eur. J. Mech. A/Solids
,
14
(
4
), pp.
499
527
.
6.
Tvergaard
,
V.
,
1989
, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
(
1
), pp.
83
151
.10.1016/S0065-2156(08)70195-9
7.
Marin
,
E. B.
, and
Mcdowell
,
D. L.
,
1996
, “
Associative Versus Non-Associative Porous Viscoplasticity Based on Internal State Variable Concepts
,”
Int. J. Plast.
,
12
(
5
), pp.
629
669
.10.1016/S0749-6419(96)00023-X
8.
Horstemeyer
,
M. F.
,
Lathrop
,
J.
,
Gokhale
,
A. M.
, and
Dighe
,
M.
,
2000
, “
Modeling Stress State Dependent Damage Evolution in a Cast Al-Si-Mg Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
,
33
(
1
), pp.
31
47
.10.1016/S0167-8442(99)00049-X
9.
Mähler
,
L.
,
Ekh
,
M.
, and
Runesson
,
K.
,
2001
, “
A Class of Thermo-Hyperelastic-Viscoplastic Models for Porous Materials: Theory and Numerics
,”
Int. J. Plast.
,
17
(
7
), pp.
943
969
.10.1016/S0749-6419(00)00048-6
10.
Bammann
,
D. J.
,
1984
, “
An Internal Variable Model of Viscoplasticity
,”
Int. J. Eng. Sci.
,
22
(
8–10
), pp.
1041
1053
.10.1016/0020-7225(84)90105-8
11.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1989
, “
A Damage Model for Ductile Metals
,”
Nucl. Eng. Des.
,
116
(
3
), pp.
355
362
.10.1016/0029-5493(89)90095-2
12.
Bammann
,
D. J.
,
1990
, “
Modeling Temperature and Strain Rate Dependent Large Deformations of Metals
,”
ASME Appl. Mech. Rev.
,
43 5
(
Part 2
), pp.
312
319
.10.1115/1.3120834
13.
Bammann
,
D. J.
,
Chiesa
,
M. L.
,
Horstemeyer
,
M. F.
, and
Weingarten
,
L. I.
,
1993
, “Failure in Ductile Materials Using Finite Element Methods,”
Structural Crashworthiness and Failure
, N. Jones and T. Wierzbicki, eds.,
Elsevier
,
Amsterdam
.
14.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
,
1996
, “
Modeling Large Deformation and Failure in Manufacturing Processes
,”
Theoretical and Applied Mechanics
,
T.
Tatsumi
,
E.
Wannabe
, and
T.
Kambe
, eds.,
Elsevier
,
Amsterdam
, pp.
359
376
.
15.
Horstemeyer
,
M. F.
, and
Gokhale
,
A. M.
,
1999
, “
A Void-Crack Nucleation Model for Ductile Metals
,”
Int. J. Solids Struct.
,
36
(
33
), pp.
5029
5055
.10.1016/S0020-7683(98)00239-X
16.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by Void Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
363
371
.10.1115/1.3601204
17.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
, “
On Creep Fracture by Void Growth
,”
Prog. Mater. Sci.
,
27
(
3–4
), pp.
189
244
.10.1016/0079-6425(82)90001-9
18.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strain
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.10.1115/1.3564580
19.
Horstemeyer
,
M. F.
,
2001
, “
From Atoms to Autos: A New Design Paradigm Using Microstructure-Property Modeling. Part 1: Monotonic Loading Conditions
,” Sandia National Laboratory, Livermore, CA, Technical Report No. SAND2000-8662.
20.
Horstemeyer
,
M. F.
,
Matalanis
,
M. M.
,
Sieber
,
A. M.
, and
Botos
,
M. L.
,
2000
, “
Micromechanical Finite Element Calculations of Temperature and Void Configuration Effects on Void Growth and Coalescence
,”
Int. J. Plast.
,
16
(
7–8
), pp.
979
1015
.10.1016/S0749-6419(99)00076-5
21.
Metaldyne
,
2007
, “
Fc-0205 Powder Metal Production
,” http://metaldyne.com
22.
ASTM Standard E8,
2009
, “Standard Test Methods for Tension Testing of Metallic Materials,”
ASTM
International, West Conshohocken, PA.10.1520/E0008_E0008M-09
23.
Allison
,
P. G.
,
Horstemeyer
,
M. F.
,
Hammi
,
Y.
,
Brown
,
H. R.
,
Tucker
,
M. T.
, and
Hwang
,
Y.-K.
,
2011
, “
Microstructure-Property Relations of a Powder Metallurgy Steel (Fc-0205) Under Varying Temperatures, Strain Rates, and Stress States
,”
Mater. Sci. Eng., A
,
529
(
25
), pp.
335
344
.10.1016/j.msea.2011.09.037
24.
German
,
R. M.
,
2005
,
Powder Metallurgy and Particulate Materials Processing
,
MPIF
,
Princeton, NJ
.
25.
Bridgman
,
P. W.
,
1923
, “
The Compressibility of Thirty Metals as a Function of Pressure and Temperature
,”
Proc. Am. Acad. Arts Sci.
,
58
(
5
), pp.
165
242
.10.2307/20025987
You do not currently have access to this content.