Tension–tension fatigue tests were conducted on an electrodeposited copper film with a thickness of 12 μm under four levels of maximum stress and two levels of mean stress. Statistical characteristics of the measured fatigue lives were analyzed using three estimation methods for cumulative distribution function and five probability distributions in order to identify the dominant probability distribution for the fatigue life of copper film. It was found that while the 3-parameter Weibull distribution provided the best fit for the measured data in most cases, the other distributions also provide a similar coefficient of correlation for the fit. The absence of the dominant probability distribution was discussed with considerations of the deformation mode and the scanning electron microscope (SEM) measurements of fatigue-fractured surfaces. Based on the statistical analysis, the probabilistic stress-life (PSN) curves were obtained for statistical prediction of fatigue life of the copper film in the intermediate life regime.

References

References
1.
Merchant
,
H. D.
,
Minor
,
M. G.
, and
Liu
,
Y. L.
,
1999
, “
Mechanical Fatigue of Thin Copper Foil
,”
J. Electron. Mater.
,
28
(
9
), pp.
998
1007
.10.1007/s11664-999-0176-x
2.
Park
,
J. H.
,
An
,
J. H.
,
Kim
,
Y. J.
, and
Choi
,
H. C.
,
2008
, “
Effect of Fabrication on High Cycle Fatigue Properties of Copper Thin Films
,”
Acta Mech. Solida Sin.
,
21
(
4
), pp.
318
326
.10.1007/s10338-008-0837-y
3.
Park
,
J. H.
,
An
,
J. H.
,
Kim
,
Y. J.
,
Huh
,
Y. H.
, and
Lee
,
H. J.
,
2008
, “
Tensile and High Cycle Fatigue Test of Copper Thin Film
,”
Materialwiss. Werkstofftech.
,
39
(
2
), pp.
187
192
.10.1002/mawe.200700262
4.
Lin
,
M. T.
,
Tong
,
C. J.
, and
Shiu
,
K. S.
,
2010
, “
Novel Microtensile Method for Monotonic and Cyclic Testing of Freestanding Copper Thin Films
,”
Exp. Mech.
,
50
(
1
), pp.
55
64
.10.1007/s11340-009-9221-1
5.
Huh
,
Y. H.
,
Kim
,
D. I.
,
Kim
,
D. J.
,
Lee
,
H. M.
,
Hong
,
S. G.
, and
Park
,
J. H.
,
2011
, “
An Investigation of Fatigue Characteristics of Copper Film
,”
Exp. Mech.
,
51
(
7
), pp.
1033
1038
.10.1007/s11340-010-9412-9
6.
Bossuyt
,
F.
,
Guenther
,
J.
,
Löher
,
T.
,
Seckel
,
M.
,
Sterken
,
T.
, and
de Vries
,
J.
,
2011
, “
Cyclic Endurance Reliability of Stretchable Electronic Substrates
,”
Microelectron. Reliab.
,
51
(
3
), pp.
628
635
.10.1016/j.microrel.2010.09.032
7.
Connolley
,
T.
,
Mcchugh
,
P. E.
, and
Bruzzi
,
M.
,
2005
, “
A Review of Deformation and Fatigue of Metals at Small Size Scales
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
12
), pp.
1119
1152
.10.1111/j.1460-2695.2005.00951.x
8.
Klein
,
M.
,
Hadrboletz
,
A.
,
Weiss
,
B.
, and
Khatibi
,
G.
,
2001
, “
The ‘Size Effect’ on the Stress–Strain, Fatigue and Fracture Properties of Thin Metallic Foils
,”
Mater. Sci. Eng., A
,
319-321
, pp.
924
928
.10.1016/S0921-5093(01)01043-7
9.
Faurie
,
D.
,
Renault
,
P. O.
,
Le Bourhis
,
E.
, and
Goudeau
,
Ph.
,
2006
, “
Study of Texture Effect on Elastic Properties of Au Thin Films by X-Ray Diffraction and In Situ Tensile Testing
,”
Acta Mater.
,
54
(
17
), pp.
4503
4513
.10.1016/j.actamat.2006.05.036
10.
Kraft
,
O.
, and
Volkert
,
C. A.
,
2001
, “
Mechanical Testing of Thin Films and Small Structures
,”
Adv. Eng. Mater.
,
3
(
3
), pp.
99
110
.10.1002/1527-2648(200103)3:3<99::AID-ADEM99>3.0.CO;2-2
11.
Tsuchiya
,
T.
,
Hirata
,
M.
,
Chiba
,
N.
,
Udo
,
R.
,
Yoshitomi
,
Y.
,
Ando
,
T.
,
Sato
,
K.
,
Takashima
,
K.
,
Higo
,
Y.
,
Saotome
,
Y.
,
Ogawa
,
H.
, and
Ozaki
,
K.
,
2005
, “
Cross Comparison of Thin-Film Tensile-Testing Methods Examined Using Single-Crystal Silicon, Polysilicon, Nickel, and Titanium Films
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1178
1186
.10.1109/JMEMS.2005.851820
12.
Read
,
D. T.
,
1998
, “
Tension-Tension Fatigue of Copper Thin Films
,”
Int. J. Fatigue
,
20
(
3
), pp.
203
209
.10.1016/S0142-1123(97)00080-7
13.
Kraft
,
O.
,
Schwaiger
,
R.
, and
Wellner
,
P.
,
2001
, “
Fatigue in Thin Films: Lifetime and Damage Formation
,”
Mater. Sci. Eng., A
,
319–321
, pp.
919
923
.10.1016/S0921-5093(01)00990-X
14.
Allameh
,
S. M.
,
Lou
,
J.
,
Kavishe
,
F.
,
Buchheit
,
T.
, and
Soboyejo
,
W. O.
,
2004
, “
An Investigation of Fatigue in LIGA Ni MEMS Thin Films
,”
Mater. Sci. Eng.
, A,
371
(
1-2
), pp.
256
266
.10.1016/j.msea.2003.12.020
15.
Yang
,
Y.
,
Imasogie
,
B. I.
,
Allameh
,
S. M.
,
Boyce
,
B.
,
Lian
,
K.
,
Lou
,
J.
, and
Soboyejo
,
W. O.
,
2007
, “
Mechanisms of Fatigue in LIGA Ni MEMS Thin Films
,”
Mater. Sci. Eng., A
,
444
(
1-2
), pp.
39
50
.10.1016/j.msea.2006.06.124
16.
Schwaiger
,
R.
, and
Kraft
,
O.
,
2003
, “
Size Effects in the Fatigue Behavior of Thin Ag Films
,”
Acta Mater.
,
51
(
1
), pp.
195
206
.10.1016/S1359-6454(02)00391-9
17.
Takashima
,
K.
, and
Higo
,
Y.
,
2005
, “
Fatigue and Fracture of a Ni–P Amorphous Alloy Thin Film on the Micrometer Scale
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
8
), pp.
703
710
.10.1111/j.1460-2695.2005.00923.x
18.
Xiulin
,
Z.
,
Zhen
,
L.
, and
Baotong
,
L.
,
1996
, “
Prediction of Probability Distribution of Fatigue Life of 15MnVN Steel Notched Elements Under Variable-Amplitude Loading
,”
Int. J. Fatigue
,
18
(
2
), pp.
81
86
.10.1016/0142-1123(95)00081-X
19.
Yan
,
J. H.
,
Zheng
,
X. L.
, and
Zhao
,
K.
,
2000
, “
Prediction of Fatigue Life and Its Probability Distribution of Notched Friction Welded Joints Under Variable-Amplitude Loading
,”
Int. J. Fatigue
,
22
(
6
), pp.
481
494
.10.1016/S0142-1123(00)00021-9
20.
Zhao
,
Y. X.
,
2012
, “
A Fatigue Reliability Analysis Method Including Super Long Life Regime
,”
Int. J. Fatigue
,
35
(
1
), pp.
79
90
.10.1016/j.ijfatigue.2010.11.011
21.
Toasa Caiza
,
P. D.
, and
Ummenhofer
,
T.
,
2011
, “
General Probability Weighted Moments for the Three-Parameter Weibull Distribution and Their Application in S–N Curves Modelling
,”
Int. J. Fatigue
,
33
(
12
), pp.
1533
1538
.10.1016/j.ijfatigue.2011.06.009
22.
Hwangbo
,
Y.
, and
Song
,
J. H.
,
2010
, “
Fatigue Life and Plastic Deformation Behavior of Electrodeposited Copper Thin Films
,”
Mater. Sci. Eng.
, A,
527
(
9
), pp.
2222
2232
.10.1016/j.msea.2010.01.016
23.
Hwangbo
,
Y.
, and
Song
,
J. H.
,
2011
, “
Plastic Deformation Behavior Analysis of an Electrodeposited Copper Thin Film Under Fatigue Loading
,”
Int. J. Fatigue
,
33
(
9
), pp.
1175
1181
.10.1016/j.ijfatigue.2011.02.005
24.
Merchant
,
H. D.
,
Khatibi
,
G.
, and
Weiss
,
B.
,
2004
, “
Elastic and Elastoplastic Response of Thin Copper Foil
,”
J. Mater. Sci.
39
, pp.
4157
4170
.10.1023/B:JMSC.0000033395.87373.ea
25.
ASM Handbook
, Vol.
2
,
1990
,
Properties & Selection: Nonferrous Alloys and Special Purpose Materials
,
ASM International
,
Materials Park, OH
.
26.
Gad-el-Hak
,
M.
,
2005
,
MEMS Handbook
,
CRC Press
,
Boca Raton, FL
.
27.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
John Wiley
,
New York
.
28.
Virkler
,
D. A.
,
Hillberry
,
B. M.
, and
Goel
,
P. K.
,
1979
, “
The Statistical Nature of Fatigue Crack Propagation
,”
J. Eng. Mater. Technol.
,
101
(
2
), pp.
148
153
.10.1115/1.3443666
29.
Laz
,
P. J.
, and
Hillberry
,
B. M.
,
1998
, “
Fatigue Life Prediction From Inclusion Initiated Cracks
,”
Int. J. Fatigue
,
20
(
4
), pp.
263
270
.10.1016/S0142-1123(97)00136-9
30.
Cross
,
R.
,
Makeev
,
A.
, and
Armanios
,
E.
,
2007
, “
Simultaneous Uncertainty Quantification of Fracture Mechanics Based Life Prediction Model Parameters
,”
Int. J. Fatigue
,
29
(
8
), pp.
1510
1515
.10.1016/j.ijfatigue.2006.10.027
31.
Rao
,
S. S.
,
1992
,
Reliability-Based Design
,
McGraw-Hill
,
New York
.
32.
Kaper
,
K. C.
, and
Lamberson
,
L. R.
,
1997
,
Reliability in Engineering Design
,
John Wiley
,
New York
.
33.
Tiryakioğlu
,
M.
,
2008
, “
Statistical Distributions for the Size of Fatigue-Initiating Defects in Al–7%Si–0.3%Mg Alloy Castings: A Comparative Study
,”
Mater. Sci. Eng., A
,
497
(
1-2
), pp.
119
125
.10.1016/j.msea.2008.06.023
34.
Teng
,
X.
,
Mae
,
H.
,
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2009
, “
Pore Size and Fracture Ductility of Aluminum Low Pressure Die Casting
,”
Eng. Fract. Mech.
,
76
(
8
), pp.
983
996
.10.1016/j.engfracmech.2009.01.001
35.
Lehmann
,
E. L.
, and
Romano
,
J. P.
,
2005
,
Testing Statistical Hypotheses
,
3rd ed.
,
Springer
,
New York
.
36.
Heller
,
R. A.
,
1971
,
Probabilistic Aspect of Fatigue
,
ASTM STP 511, ASTM International
.
37.
Bolotin
,
V. V.
,
Babkin
,
A. A.
, and
Belousov
,
I. L.
,
1998
, “
Probabilistic Model of Early Fatigue Crack Growth
,”
Prob. Eng. Mech.
,
13
(
3
), pp.
227
232
.10.1016/S0266-8920(97)00029-5
38.
Suresh
,
S.
,
2004
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, MA
.
39.
Kapoor
,
R.
,
Sree Hari Rao
,
V.
,
Mishra
,
R. S.
,
Baumann
,
J. A.
, and
Grant
,
G.
,
2011
, “
Probabilistic Fatigue Life Prediction Model for Alloys With Defects: Applied to A206
,”
Acta Mater.
,
59
(
9
), pp.
3447
3462
.10.1016/j.actamat.2011.02.019
40.
Hong
,
S.
, and
Weil
,
R.
,
1996
, “
Low Cycle Fatigue of Thin Copper Foils
,”
Thin Solid Films
,
283
(
1-1
), pp.
175
181
.10.1016/0040-6090(95)08225-5
You do not currently have access to this content.