In this paper, a new small-sized (two-bar) specimen type, which is suitable for use in obtaining both uniaxial creep strain and creep rupture life data, is described. The specimen has a simple geometry and can be conveniently machined and loaded (through pin-connections) for testing. Conversion relationships between the applied load and the corresponding uniaxial stress, and between the measured load-line deformations and the corresponding uniaxial minimum creep strain rate, have been obtained, based on the reference stress method (RSM), in conjunction with finite element analyses. Using finite element analyses the effects of the specimen dimensions on reference stress parameters have been investigated. On this basis, specimen dimension ratio ranges are recommended. The effects of friction, between the loading pins and the specimen surfaces, on the specimen failure time, are also investigated. Test results obtained from two-bar specimen tests and from corresponding uniaxial specimen tests, for a P91 steel at 600 °C, are used to validate the test method. These results demonstrated that the specimen type is capable of producing full uniaxial creep strain curves. The advantages of this new, small, creep test specimen, for determining uniaxial creep data, are discussed and recommendations for future research are given.

References

References
1.
Maharaj
,
C.
,
Dear
,
J. P.
, and
Morris
,
A.
,
2009
, “
Review of Methods to Estimate Creep Damage in Low-Alloy Steel Power Station Steam Pipes
,”
Strain
,
45
(
4
), pp.
316
331
.10.1111/j.1475-1305.2008.00465.x
2.
Parker
,
J. D.
, and
James
,
J. D.
,
1994
, “
Creep Behaviour of Miniature Disc Specimens of Low Alloy Steel
,”
ASME, PVP Developments in a Progressing Technology
,
279
, pp.
167
172
.
3.
Hyde
,
T. H.
, and
Sun
,
W.
,
2009
, “
Evaluation of the Conversion Relationship for Impression Creep Testing
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
757
763
.10.1016/j.ijpvp.2009.07.001
4.
Hyde
,
T. H.
, and
Sun
,
W.
,
2009
, “
A Novel, High-Sensitivity, Small Specimen Creep Test
,”
J. Strain Anal.
,
44
(3), pp.
171
185
.10.1243/03093247JSA502
5.
Li
,
Y. Z.
, and
Šturm
,
R.
,
2008
, “
Determination of Creep Properties From Small Punch Test
,”
Proceedings of ASME Pressure Vessels and Piping Division Conference
,”
Chicago, IL
, July 27–31,
ASME
Paper No. PVP2008-61437, pp.
739
750
.10.1115/PVP2008-61437
6.
Hyde
,
T. H.
, and
Sun
,
W.
,
2010
, “
Some Considerations on Specimen Types for Small Sample Creep Tests
,”
Mater. High. Temp.
,
27
(
3
), pp.
157
165
.10.3184/096034010X12801645220736
7.
Askins
,
M. C.
, and
Marchant
,
K. D.
,
1987
, “
Estimating the Remaining Life of Boiler Pressure Parts, EPRI Contract RP2253-1, Part 2, Miniature Specimen Creep Testing in Tension
,” CEGB Report TPRD/3099/R86, CEGB, UK.
8.
Hyde
,
T. H.
,
Sun
,
W.
, and
Ali
,
B. S. M.
,
2012
, “
Small Creep Test Specimen for Use in Determining Uniaxial Creep Rupture Data
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
,
Ostrava, Czech Republic
, October 2–4, pp.
261
270
.
9.
Anderson
,
R. G.
,
Gardener
,
L. R. T.
, and
Hodgkins
,
W. R.
,
1963
, “
Deformation of Uniformly Loaded Beams Obeying Complex Creep Laws
,”
J. Mech. Eng. Sci.
,
5
, pp.
238
244
.10.1243/JMES_JOUR_1963_005_033_02
10.
Johnsson
,
A.
,
1973
, “
An Alternative Definition of Reference Stress for Creep
,”
Int. J. Mech. Sci.
,
16
(
5
), pp.
298
305
.
11.
Hyde
,
T. H.
,
Yehia
,
K. A.
, and
Becker
,
A. A.
,
1993
, “
Interpretation of Impression Creep Data Using a Reference Stress Approach
,”
Int. J. Mech. Sci.
,
35
(
6
), pp.
451
462
.10.1016/0020-7403(93)90035-S
12.
Hyde
,
T. H.
,
Yehia
,
K.
, and
Sun
,
W.
,
1996
, “
Observation on the Creep of Two-Material Structures
,”
J. Strain Anal.
,
31
(
6
), pp.
441
461
.10.1243/03093247V316441
13.
MacKenzie
,
A. C.
,
1968
, “
On the Use of a Single Uniaxial Test to Estimate Deformation Rates in Some Structures Undergoing Creep
,”
Int. J. Mech. Sci.
,
10
, pp.
441
453
.10.1016/0020-7403(68)90007-6
14.
Sun
,
W.
,
Hyde
,
T. H.
, and
Brett
,
S. J.
,
2012
, “
Use of Impression Creep Test Method for Determining Minimum Creep Strain Rate Data
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
,
Ostrava, Czech Republic
, October 2–4, pp.
297
304
.
15.
Takamoto
,
I.
,
Yuichi
,
I.
,
Masao
,
S.
,
Yusuke
,
K.
,
Takafumi
,
T.
, and
Masaharu
,
F.
,
2012
, “
Development of Miniature Creep Testing for High Temperature Materials Verification Testing
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
,
Ostrava, Czech Republic
, October 2–4, pp.
283
290
.
16.
Dassault Systèmes, 2010
, ABAQUS 6.11.3 Manual, Simulia Corp., Providence, RI.
17.
Penny
,
R. K.
, and
Marriott
,
D. L.
,
1995
,
Design for Creep
,
2nd ed.
,
Chapman & Hall
,
London
.
18.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Finite Element Creep Damage Analyses of P91 Pipes
,”
Int. J. Pressure Vessels Piping
,
83
, pp.
11
12
.10.1016/j.ijpvp.2006.08.013
19.
Liu
,
Y.
, and
Murakami
,
S.
,
1998
, “
Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis
,”
JSME Int. J.
,
41
, pp.
57
65
.10.1299/jsmea.41.57
20.
Saber
,
M.
,
Tanner
,
D. W. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2011
, “
Determination of Creep and Damage Properties for P92 at 675 °C
,”
J. Strain Anal. Eng. Des.
,
46
, pp.
842
851
.10.1177/0309324711413012
21.
Li
,
R.
,
Hyde
,
T. H.
,
Sun
,
W.
, and
Dogan
,
B.
,
2011
, “
Modelling and Data Interpretation of Small Punch Creep Testing
,”
ASME Pressure Vessels and Piping Conference, Materials and Fabrication
, Baltimore, MD, July 17–21,
ASME
Paper No. PVP2011-57204, pp.
1119
1127
.10.1115/PVP2011-57204
22.
Hyde
,
T.
,
Sun
,
W.
,
Becker
,
A.
, and
Williams
,
J.
,
2004
, “
Creep Properties and Failure Assessment of New and Fully Repaired P91 Pipe Welds at 923 K
,”
Proc. Inst. Mech. Eng., Part L
,
218
(
3
), pp.
211
222
.10.1243/1350650041323403
23.
Shibli
,
I. A.
, and
Hamata
,
N. L. M.
,
2001
, “
Creep Crack Growth in P22 and P91 Welds—Overview From SOTA and HIDA Projects
,”
Int. J. Pressure Vessels Piping
,
78
(
11–12
), pp.
785
793
.10.1016/S0308-0161(01)00091-6
24.
Hyde
,
T. H.
,
Saber
,
M.
, and
Sun
,
W.
,
2010
, “
Testing and Modelling of Creep Crack Growth in Compact Tension Specimens From a P91 Weld at 650 °C
,”
Eng. Fract. Mech.
,
77
(
15
), pp.
2946
2957
.10.1016/j.engfracmech.2010.03.043
25.
Hyde
,
C. J.
,
Hyde
,
T. H.
, and
Sun
,
W.
,
2012
, “
Small Ring Specimen Creep Testing of a Nickel-Based Superalloy
,”
2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques
,
Ostrava, Czech Republic
, October 2–4, pp.
276
282
.
26.
Evans
,
M.
, and
Wang
,
D.
,
2007
, “
Optimizing the Sensitivity of the Small-Disc Creep Test to Damage and Test Conditions
,”
J. Strain Anal.
,
42
, pp.
389
409
.10.1243/03093247JSA220
27.
Dipersio
,
F.
, and
Klapyt
,
J.
,
1995
, “
Miniaturised Creep Testing Using the Small Punch Test Technique
,”
Third International Charles Parsons Turbine Conference
, Newcastle-upon-Tyne, UK, April 25–27, pp.
419
428
.
28.
Garzillo
,
A.
,
Guardamagna
,
C.
,
Moscotti
,
L.
, and
Ranzani
,
L.
,
1996
, “
A Technique for the Residual Life Assessment of High Temperature Components Based on Creep-Rupture Testing on Welded Miniature Specimens
,”
Int. J. Pressure Vessels Piping
,
66
(
1–3
), pp.
223
232
.10.1016/0308-0161(95)00097-6
You do not currently have access to this content.