The Q-state Monte Carlo, Potts model is used to investigate 2D, anisotropic, grain growth of single-phase materials subject to temperature gradients. Anisotropy is simulated via the use of nonuniform grain boundary surface energies, and thermal gradients are simulated through the use of variable grain boundary mobilities. Hexagonal grain elements are employed, and elliptical Wulff plots are used to assign surface energies to grain lattices. The mobility is set to vary in accordance with solutions to a generalized heat equation and is solved for two separate values of the mobility coefficient. Among other findings, the results reveal that like isotropic grain growth, under the influence of a thermal gradient, anisotropic grain growth also demonstrates locally normal growth kinetics.

References

References
1.
Tjong
,
S. C.
, and
Chen
,
H.
,
2004
, “
Nanocrystalline Materials and Coatings
,”
Mater. Sci. Eng. R
,
45
, pp.
1
88
.10.1016/j.mser.2004.07.001
2.
Liu
,
Z. J.
,
Zhang
,
C. H.
,
Shen
,
Y. G.
, and
Mai
,
Y.-W.
,
2004
, “
Monte Carlo Simulation of Nanocrystalline TiN/Amorphous SiNx Composite Films
,”
J. Appl. Phys.
,
95
(
2
), pp.
758
760
.10.1063/1.1633650
3.
Lu
,
C.
,
Mai
,
Y.-W.
, and
Shen
,
Y. G.
,
2006
, “
Recent Advances on Understanding the Origin of Superhardness in Nanocomposite Coatings: A Critical Review
,”
J. Mater. Sci.
,
41
(
3
), pp.
937
950
.10.1007/s10853-006-6577-9
4.
Yang
,
W.
,
Chen
,
L.
, and
Messing
,
G.
,
1995
, “
Computer Simulation of Anisotropic Grain Growth
,”
Mater. Sci. Eng., A
,
195
(
1–2
), pp.
179
187
.10.1016/0921-5093(94)06517-9
5.
Lifshitz
,
I. M.
, and
Slyozov
,
V. V.
,
1961
, “
The Kinetics of Precipitation From Supersaturated Solid Solutions
,”
J. Phys. Chem. Solids
,
19
(
1–2
), pp.
35
50
.10.1016/0022-3697(61)90054-3
6.
Hillert
,
M.
,
1965
, “
On the Theory of Normal and Abnormal Grain Growth
,”
Acta Metall.
,
13
(
3
), pp.
227
238
.10.1016/0001-6160(65)90200-2
7.
Fan
,
D.
, and
Chen
,
L.-Q.
,
1997
, “
Diffusion-Controlled Grain Growth in Two-Phase Solids
,”
Acta Mater.
,
45
(
8
), pp.
3297
3310
.10.1016/S1359-6454(97)00022-0
8.
Anderson
,
M. P.
,
Srolovitz
,
D. J.
,
Grest
,
G. S.
, and
Sahni
,
P. S.
,
1984
, “
Computer Simulation of Grain Growth—I. Kinetics
,”
Acta Metall.
,
32
(
5
), pp.
783
791
.10.1016/0001-6160(84)90151-2
9.
Baxter
,
R. J.
,
1982
,
Exactly Solved Models in Statistical Mechanics
,
Academic Press
,
London
.
10.
Zheng
,
Y. G.
,
Lu
,
C.
,
Mai
,
Y.-W.
,
Gu
,
Y. X.
,
Zhang
,
H. W.
, and
Chen
,
Z.
,
2006
, “
Monte Carlo Simulation of Grain Growth in Two-Phase Nanocrystalline Materials
,”
Appl. Phys. Lett.
,
88
, p.
144103
.10.1063/1.2192151
11.
El-Khozondar
,
R.
,
El-Khozandar
,
H.
,
Gottstein
,
G.
, and
Rollett
,
A.
,
2006
, “
Microstructural Simulation of Grain Growth in Two-Phase Polycrystalline Materials
,”
Egypt. J. Solids
,
29
(
1
), pp.
35
47
.
12.
Kaysser
,
W. A.
,
Sprissler
,
M.
,
Handwerker
,
C. A.
, and
Blendell
,
J. E.
,
1987
, “
The Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina
,”
J. Am. Ceram. Soc.
,
70
(
5
), pp.
339
343
.10.1111/j.1151-2916.1987.tb05005.x
13.
Ito
,
O.
, and
Fuller
,
E. R.
, Jr.
,
1992
, “
Computer Modeling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Mater.
,
41
(
1
), pp.
191
198
.
14.
Heuer
,
A. H.
,
Fryburg
,
G. A.
,
Ogbuji
,
L. U.
, and
Mitchell
,
T. E.
,
1978
, “
The β to α Transformation in Polycrystalline SiC: I, Microstructural Aspects
,”
J. Am. Ceram. Soc.
,
61
(
9
), pp.
406
412
.10.1111/j.1151-2916.1978.tb09348.x
15.
Mitchell
,
T. E.
,
Ogbuji
,
L. U.
, and
Heuer
,
A. H.
,
1978
, “
The β to α Transformation in Polycrystalline SiC: II, Interfacial Energies
,”
J. Am. Ceram. Soc.
,
61
(
9
), pp.
412
413
.10.1111/j.1151-2916.1978.tb09349.x
16.
Faber
,
K. T.
,
Evans
,
A. G.
, and
Drory
,
M. D.
,
1983
, “
A Statistical Analysis of Crack Deflection as a Toughening Mechanism in Ceramic Materials
,”
Fract. Mech. Ceram.
,
6
, pp.
77
91
.
17.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1983
, “
Crack Deflection Processes: I, Theory and II, Experiment
,”
Acta Metall.
,
31
(
4
), pp.
565
584
.10.1016/0001-6160(83)90046-9
18.
Bowen
,
L. T.
, and
Avella
,
E. J.
,
1983
, “
Microstructure, Electrical Properties, and Failure Prediction in Low Clamping Voltage Zinc Oxide Varistors
,”
J. Appl. Phys.
,
54
(
5
), pp.
2764
2772
.10.1063/1.332305
19.
Garcia
,
A. L.
,
Tikare
,
V.
, and
Holm
,
E. A.
,
2008
, “
Three-Dimensional Simulation of Grain Growth in a Thermal Gradient With Non-Uniform Grain Boundary Mobility
,”
Scr. Mater.
,
59
, pp.
661
664
.10.1016/j.scriptamat.2008.05.039
20.
Tikare
,
V.
, and
Holm
,
E. A.
,
1998
, “
Simulation of Grain Growth and Pore Migration in a Thermal Gradient
,”
J. Am. Ceram. Soc.
,
81
(
3
), pp.
480
484
.10.1111/j.1151-2916.1998.tb02365.x
21.
Allen
,
J. B.
, and
Walter
,
C.
,
2012
, “
Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique
,”
ISRN Mater. Sci.
,
2012
, pp.
1
9
.10.5402/2012/698158
22.
Munoz
,
S.
, and
Anselmi-Tamburini
,
U.
,
2010
, “
Temperature and Stress Fields Evolution During Plasma Sintering Processes
,”
J. Mater. Sci.
,
45
(
23
), pp.
6528
6539
.10.1007/s10853-010-4742-7
23.
Fortes
,
M. A.
,
1992
, “
Grain Growth Kinetics: The Grain Growth Exponent—Grain Growth in Polycrystalline Materials I
,”
Mater. Sci. Forum
,
94–96
, pp.
319
324
.10.4028/www.scientific.net/MSF.94-96.319
24.
Kurtz
,
S. K.
, and
Carpay
,
F. M. A.
,
1980
, “
Microstructure and Normal Grain Growth in Metals and Ceramics. Part I. Theory
,”
J. Appl. Phys.
,
51
(
11
), pp.
5725
5744
.10.1063/1.327580
25.
Holm
,
E. A.
,
Hassold
,
G. N.
, and
Miodownik
,
M. A.
,
2001
, “
On Misorientation Distribution Evolution During Anisotropic Grain Growth
,”
Acta Mater.
,
49
, pp.
2981
2991
.10.1016/S1359-6454(01)00207-5
26.
Grest
,
G. S.
,
Srolovitz
,
D. J.
, and
Anderson
,
M. P.
,
1985
, “
Computer Simulation of Grain Growth. 4. Anisotropic Grain Boundary Energies
,”
Acta Metall.
,
33
, pp.
509
520
.10.1016/0001-6160(85)90093-8
27.
Holm
,
E. A.
,
Glazier
,
J. A.
,
Srolovitz
,
D. J.
, and
Grest
,
G. S.
,
1991
, “
Effects of Lattice Anisotropy and Temperature on Domain Growth in the Two-Dimensional Potts Model
,”
Phys. Rev. A
,
43
(
6
), pp.
2662
2668
.10.1103/PhysRevA.43.2662
28.
Upmanyu
,
M.
,
Hassold
,
G. N.
,
Kazaryan
,
A.
,
Holm
,
E. A.
,
Wang
,
Y.
,
Patton
,
B.
, and
Srolovitz
,
D. J.
,
2002
, “
Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth
,”
Interface Sci.
,
10
, pp.
201
216
.10.1023/A:1015832431826
29.
Srolovitz
,
D. J.
,
Anderson
,
M. P.
,
Grest
,
G. S.
, and
Rollett
,
A. D.
,
1988
, “
Computer Simulation of Recrystallization—II. Heterogeneous Nucleation and Growth
,”
Acta Metall.
,
36
(
8
), pp.
2115
2128
.10.1016/0001-6160(88)90313-6
30.
Wejche
,
J.
,
Weaire
,
D.
, and
Kermode
,
J. P.
,
1986
, “
Monte Carlo Simulation of the Evolution of a Two-Dimensional Soap Froth
,”
Philos. Mag.
,
B53
, pp.
15
24
.
31.
Fluent Inc.,
2007
,
Gambit 2.4 Users Guide
, Fluent Inc.,
Lebanon
,
NH
.
32.
OpenFoam
,
The Mews
,
2006
,
Picketts Lodge
,
Surrey, UK
.
33.
Atkinson
,
H. V.
,
1988
, “
Theories of Normal Grain Growth in Pure Single Phase Systems
,”
Acta Metall.
,
36
, pp.
469
491
.10.1016/0001-6160(88)90079-X
34.
Qin
,
X.
, and
Liu
,
G.
,
2005
, “
Grain Growth Simulation Based on Potts Model With Different Parameters—PRICM-5
,”
Mater. Sci. Forum
,
475–479
, pp.
3173
3176
.10.4028/www.scientific.net/MSF.475-479.3173
You do not currently have access to this content.