Uniaxial tension tests were conducted on thin commercially pure (CP) titanium sheets subjected to electrically assisted deformation using a new experimental setup to decouple thermal–mechanical and possible electroplastic behavior. The observed absence of stress reductions for specimens air-cooled to near room temperature motivated the need to reevaluate the role of temperature on modeling the plastic behavior of metals subjected to electrically assisted deformation, an item that is often overlooked when invoking electroplasticity theory. As a result, two empirical constitutive models, a modified-Hollomon and the Johnson–Cook models of plastic flow stress, were used to predict the magnitude of stress reductions caused by the application of constant dc current and the associated Joule heating temperature increase during electrically assisted tension experiments. Results show that the thermal–mechanical coupled models can effectively predict the mechanical behavior of commercially pure titanium in electrically assisted tension and compression experiments.

References

References
1.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
276
287
.10.1016/S0921-5093(00)00786-3
2.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2007
, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
84
94
.10.1115/1.2386164
3.
Ross
,
C. D.
,
Irvin
,
D. B.
, and
Roth
,
J. T.
,
2007
, “
Manufacturing Aspects Relating to the Effects of Direct Current on the Tensile Properties of Metals
,”
J. Eng. Mater. Technol.
,
129
(
2
), pp.
342
347
.10.1115/1.2712470
4.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2011
, “
Electroplastic Modeling of Bending Stainless Steel Sheet Metal Using Energy Methods
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041008
.10.1115/1.4004589
5.
Jordan
,
A.
, and
Kinsey
,
B. L.
,
2012
, “
Measurement of Strain Gradients and Forces During Electrically-Assisted Microbending
,”
Proceedings of the 7th International Conference on MicroManufacturing
(ICOMM 2012), Evanston, IL, March 12–14, pp.
254
258
.
6.
Green
,
C. R.
,
McNeal
,
T. A.
, and
Roth
,
J. T.
,
2009
, “
Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM)
,”
37th North American Manufacturing Research Conference, Greenville, SC, May 19–22, Transactions of the North American Manufacturing Research Institution of SME: Vol. 37, Curran Associates, Red Hook, NY
, pp.
403
410
.
7.
Xu
,
Z.
,
Tang
,
G.
,
Tian
,
S.
,
Ding
,
F.
, and
Tian
,
H.
,
2007
, “
Research of Electroplastic Rolling of AZ31 Mg Alloy Strip
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
128
133
.10.1016/j.jmatprotec.2006.07.019
8.
Guan
,
L.
,
Tang
,
G.
, and
Chu
,
P. K.
,
2010
, “
Recent Advances and Challenges in Electroplastic Manufacturing Processing of Metals
,”
J. Mater. Res.
,
25
(
07
), pp.
1215
1224
.10.1557/JMR.2010.0170
9.
Thomson
,
E.
,
1886
, “
Apparatus for Electric Welding
,” U.S. Patent No. 347140.
10.
Lemp
,
H.
,
1890
, “
Forming or Shaping Metals by Electricity
,” U.S. Patent No. 432630.
11.
Dewey
,
M.
,
1890
, “
Method of Utilizing Electricity in the Formation of Sheet-Metal Articles
,” U.S. Patent No. 438406.
12.
Forsyth
,
G.
,
1914
, “
Method and Apparatus for Forming Metallic Sheets and the Like
,” U.S. Patent No. 1,112,779.
13.
Kilpatrick
,
R.
, and
Stovall
,
F.
,
1957
, “
Apparatus and Improvements for Hot Forming Materials
,” U.S. Patent No. 2,808,501.
14.
Morris
,
C.
,
Manchester
,
W.
,
Hill
,
J.
,
Bridwell
,
R.
, and
Hugill
,
D.
,
1977
, “
Hot Stretch-Wrap Forming With Resistance Heating
,” U.S. Patent No. 4,011,429.
15.
Dariavach
,
N.
, and
Rice
,
J.
,
2007
, “
Techniques for Manufacturing a Product Using Electric Current During Plastic Deformation of Material
,” U.S. Patent No. 7,302,821.
16.
Golovashchenko
,
S.
,
Krause
,
A.
, and
Roth
,
J. T.
,
2009
, “
Method and Apparatus for Forming a Blank as a Portion of the Blank Receives Pulses of Direct Current
,” U.S. Patent No. 7,516,640.
17.
Troitskii
,
O. A.
,
1969
, “
Electromechanical Effect in Metals
,”
ZhETF Pis. Red.
,
10
(
1
), pp.
18
22
.
18.
Molotskii
,
M.
, and
Fleurov
,
V.
,
1995
, “
Magnetic Effects in Electroplasticity of Metals
,”
Phys. Rev. B
,
52
(
22
), pp.
15829
15834
.10.1103/PhysRevB.52.15829
19.
Okazaki
,
K.
,
Kagawa
,
M.
, and
Conrad
,
H.
,
1980
, “
An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titatnium
,”
Mater. Sci. Eng.
,
45
(
2
), pp.
109
116
.10.1016/0025-5416(80)90216-5
20.
Kir'yanchev
,
N. E.
,
Troitskii
,
O. A.
, and
Klevtsur
,
S. A.
,
1983
, “
Electroplastic Deformation of Metals (Review)
,”
Strength Mater.
,
15
(
5
), pp.
709
715
.10.1007/BF01523224
21.
Goldman
,
P. D.
,
Motowidlo
,
L. R.
, and
Galligan
,
J. M.
,
1981
, “
The Absence of an Electroplastic Effect in Lead at 4.2K
,”
Scr. Metall.
,
15
(
4
), pp.
353
356
.10.1016/0036-9748(81)90208-8
22.
Klimov
,
K. M.
, and
Novikov
,
I. I.
,
1984
, “
The Electroplastic Effect
,”
Strength Mater.
,
16
(
2
), pp.
270
276
.10.1007/BF01530074
23.
Andrawes
,
J.
,
Kronenberger
,
T.
,
Perkins
,
T.
,
Roth
,
J.
, and
Warley
,
R.
,
2007
, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Process.
,
22
(
1
), pp.
91
101
.10.1080/10426910601016004
24.
Dzialo
,
C. M.
,
Siopis
,
M. S.
,
Kinsey
,
B. L.
, and
Weinmann
,
K. J.
,
2010
, “
Effect of Current Density and Zinc Content During Electrical-Assisted Forming of Copper Alloys
,”
CIRP Ann.–Manuf. Technol.
,
59
(
1
), pp.
299
302
.10.1016/j.cirp.2010.03.014
25.
Fan
,
R.
,
Magargee
,
J.
,
Hu
,
P.
, and
Cao
,
J.
,
2013
, “
Influence of Grain Size and Grain Boundaries on the Thermal and Mechanical Behavior of 70/30 Brass Under Electrically-Assisted Deformation
,”
Mater. Sci. Eng., A
,
574
(
0
), pp.
218
225
.10.1016/j.msea.2013.02.066
26.
Kinsey
,
B. L.
,
Cullen
,
G.
,
Jordan
,
A.
, and
Mates
,
S.
,
2013
, “
Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti-6Al-4V
,”
CIRP Ann.–Manuf. Technol.
(in press).10.1016/j.cirp.2013.03.058
27.
Li
,
D. L.
, and
Yu
,
E. L.
,
2010
, “
An Approach Based on the Classical Free-Electron Theory to Study Electroplastic Effect
,”
Adv. Mater. Res.
,
148-149
, pp.
71
74
.10.4028/www.scientific.net/AMR.148-149.71
28.
Li
,
D.
, and
Yu
,
E.
,
2009
, “
Computation Method of Metal's Flow Stress for Electroplastic Effect
,”
Mater. Sci. Eng., A
,
505
(
1–2
), pp.
62
64
.10.1016/j.msea.2008.10.040
29.
Bunget
,
C.
,
Salandro
,
W. A.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2010
, “
Energy-Based Modeling of an Electrically-Assisted Forging Process
,”
Trans. NAMRI/SME
,
38
, pp.
647
654
.
30.
Okazaki
,
K.
,
Kagawa
,
M.
, and
Conrad
,
H.
,
1978
, “
A Study of the Electroplastic Effect in Metals
,”
Scr. Metall.
,
12
(
11
), pp.
1063
1068
.10.1016/0036-9748(78)90026-1
31.
Bilyk
,
S. R.
,
Ramesh
,
K. T.
, and
Wright
,
T. W.
,
2005
, “
Finite Deformations of Metal Cylinders Subjected to Electromagnetic Fields and Mechanical Forces
,”
J. Mech. Phys. Solids
,
53
(
3
), pp.
525
544
.10.1016/j.jmps.2004.10.002
32.
Zhou
,
M.
,
Needleman
,
A.
, and
Clifton
,
R.
,
1994
, “
Finite Element Simulations of Shear Localization in Plate Impact
,”
J. Mech. Phys. Solids
,
42
(
3
), pp.
423
458
.10.1016/0022-5096(94)90026-4
33.
Chichilli
,
D. R.
,
Ramesh
,
K. T.
, and
Hemker
,
K. J.
,
1998
, “
The High-Strain-Rate Response of Alpha-Titanium Experiments, Deformation Mechanisms and Modeling
,”
Acta Mater.
,
46
, pp.
1025
1043
.10.1016/S1359-6454(97)00287-5
34.
Unger
,
J.
,
Stiemer
,
M.
,
Walden
,
L.
,
Bach
,
F.
,
Blum
,
H.
, and
Svendsen
,
B.
,
2006
, “
On the Effect of Current Pulses on the Material Behavior During Electromagnetic Metal Forming
,”
2nd International Conference on High Speed Forming
, (ICHSF 2006), Dortmund, Germany March 20–21, pp.
23
32
. Available at http://hdl.handle.net/2003/27076
35.
Gallo
,
F.
,
Satapathy
,
S.
, and
Ravi-Chandar
,
K.
,
2012
, “
Plastic Deformation in Electrical Conductors Subjected to Short-Duration Current Pulses
,”
Mecha. Mater.
,
55
, pp.
146
162
.10.1016/j.mechmat.2012.07.001
36.
Jones
,
J. J.
, and
Mears
,
L.
,
2012
, “
Thermal Response Characterization of Sheet Metals During Electrically-Assisted Forming (EAF)
,”
Proceedings of ASME International Manufacturing Science and Engineering Conference (MSEC2012), Notre Dame, IN, June 4–8
, pp.
189
198
.
37.
Mai
,
J.
,
Peng
,
L.
,
Lin
,
Z.
, and
Lai
,
X.
,
2011
, “
Experimental Study of Electrical Resistivity and Flow Stress of Stainless Steel 316L in Electroplastic Deformation
,”
Mater. Sci. Eng., A
,
528
(
10–11
), pp.
3539
3544
.10.1016/j.msea.2011.01.058
38.
Liang
,
R.
, and
Khan
,
A. S.
,
1999
, “
A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures
,”
Int. J. Plast.
,
15
(
9
), pp.
963
980
.10.1016/S0749-6419(99)00021-2
39.
Bowen
,
A. W.
, and
Partridge
,
P. G.
,
1974
, “
Limitations of the Hollomon Strain-Hardening Equation
,”
J. Phys. D: Appl. Phys.
,
7
(
7
), p.
969
.10.1088/0022-3727/7/7/305
40.
Nemat-Nasser
,
S.
,
Guo
,
W. G.
, and
Cheng
,
J. Y.
,
1999
, “
Mechanical Properties and Deformation Mechanisms of a Commercially Pure Titanium
,”
Acta Mater.
,
47
(
13
), pp.
3705
3720
.10.1016/S1359-6454(99)00203-7
41.
Sheikh-Ahmad
,
J. Y.
, and
Bailey
,
J. A.
,
1995
, “
A Constitutive Model for Commercially Pure Titanium
,”
ASME J. Eng. Mater. Technol.
,
117
(
2
), pp.
139
144
.10.1115/1.2804520
42.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of 7th International Symposium on Ballistics
, The Hague, The Netherlands, April 19–21,
547
(
11
), pp.
541
547
.
43.
Vinh
,
T.
,
Afzali
,
M.
, and
Roche
,
A.
,
1979
, “
Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate
,”
Proceedings of International Conference on the Mechanical Behavior of Materials (ICM3)
, Cambridge, UK, August 20–24, Vol.
2
, pp.
633
642
.
44.
Salandro
,
W. A.
,
Bunget
,
C. J.
, and
Mears
,
L.
,
2012
, “
A Thermal-Based Approach for Determining Electroplastic Characteristics
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
226
(
5
), pp.
775
788
.10.1177/0954405411424696
45.
Jonas
,
J. J.
,
Holt
,
R. A.
, and
Coleman
,
C. E.
,
1976
, “
Plastic Stability in Tension and Compression
,”
Acta Metall.
,
24
(
10
), pp.
911
918
.10.1016/0001-6160(76)90039-0
You do not currently have access to this content.