Forming limit diagrams (FLD) have been widely used as a powerful tool for predicting sheet metal forming failure in the industry. The common assumption for forming limits is that the deformation is limited to in-plane loading and through-thickness bending effects are negligible. In practical sheet metal applications, however, a sheet metal blank normally undergoes a combination of stretching, bending, and unbending, so the deformation is invariably three-dimensional. To understand the localized necking phenomenon under this condition, a new extended Marciniak–Kuczynski (M–K) model is proposed in this paper, which combines the FLD theoretical model with finite element analysis to predict the forming limits after a sheet metal undergoes under continuous-bending-under-tension (CBT) loading. In this hybrid approach, a finite element model is constructed to simulate the CBT process. The deformation variables after the sheet metal reaches steady state are then extracted from the simulation. They are carried over as the initial condition of the extended M–K analysis for forming limit predictions. The obtained results from proposed model are compared with experimental data from Yoshida et al. (2005, “Fracture Limits of Sheet Metals Under Stretch Bending,” Int. J. Mech. Sci., 47(12), pp. 1885–1986) under plane strain deformation mode and the Hutchinson and Neale's (1978(a), “Sheet Necking—II: Time-Independent Behavior,” Mech. Sheet Metal Forming, pp. 127–150) M–K model under in-plane deformation assumption. Several cases are studied, and the results under the CBT loading condition show that the forming limits of post-die-entry material largely depends on the strain, stress, and hardening distributions through the thickness direction. Reduced forming limits are observed for small die radius case. Furthermore, the proposed M–K analysis provides a new understanding of the FLD after this complex bending-unbending-stretching loading condition, which also can be used to evaluate the real process design of sheet metal stamping, especially when the ratio of die entry radii to the metal thickness becomes small.

References

References
1.
Hill
,
R.
,
1952
, “
On Discontinuous Plastic States, With Special Reference to Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
1
(
1
), pp.
19
30
.10.1016/0022-5096(52)90003-3
2.
Keeler
,
S. P.
, and
Backofen
,
W. A.
,
1964
, “
Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches
,”
ASM Trans. Quart.
,
65
, p.
25
.
3.
Marciniak
,
Z.
, and
Kuczynski
,
K.
,
1967
, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
(
9
), pp.
609
612
.10.1016/0020-7403(67)90066-5
4.
Storen
,
S.
, and
Rice
,
J.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
421
441
.10.1016/0022-5096(75)90004-6
5.
Hutchinson
,
J.
, and
Neale
,
K.
,
1978a
, “
Sheet Necking—II: Time-Independent Behavior
,” D. P. Koistinen, and N. M. Wang, eds.,
Mechanics of Sheet Metal Forming
, Plenum Press, New York, pp.
127
150
.
6.
Hutchinson
,
J.
, and
Neale
,
K.
,
1978b
, “
Sheet Necking—III: Strain-Rate Effects
,” D. P. Koistinen, and N. M. Wang., eds.,
Mechanics of Sheet Metal Forming
, Plenum Press, New York, pp.
269
285
.
7.
Hutchinson
,
J.
,
Neale
,
K.
, and
Needleman
,
A.
,
1978c
, “
Sheet Necking—I: Validity of Plane Stress Assumptions of the Long-Wavelength Approximation
,” D. P. Koistinen, and N. M. Wang, eds.,
Mechanics of Sheet Metal Forming
, Plenum Press, New York, pp.
111
126
.
8.
McClintock
,
F. A.
,
Zhou
,
Q.
, and
Wierzbick
,
T.
,
1993
, “
Necking in Plane Strain Under Bending With Constant Tension
,”
J. Mech. Phys. Solids
,
41
(
8
), pp.
1327
1343
.10.1016/0022-5096(93)90082-Q
9.
Shi
,
M.
, and
Gerdeen
,
J.
,
1991
, “
Effect of Strain Gradient and Curvature on Forming Limit Diagrams for Anisotropic Sheets
,”
J. Mater. Shaping Technol.
,
9
(
4
), pp.
253
268
.10.1007/BF02833650
10.
Assempour
,
A.
,
Nejadkhaki
,
H. K.
, and
Hashemi
,
R.
,
2010
, “
Forming Limit Diagrams With the Existence of Through-Thickness Normal Stress
,”
Comput. Mater. Sci.
,
48
(
3
), pp.
504
508
.10.1016/j.commatsci.2010.02.013
11.
Eyckens
,
P.
,
Van Bael
,
A.
, and
Van Houtte
,
P.
,
2011
, “
An Extended Marciniak-Kuczynski Model for Anisotropic Sheet Subjected to Monotonic Strain Paths With Through-Thickness Shear
,”
Int. J. Plast.
,
27
(
10
), pp.
1577
1597
.10.1016/j.ijplas.2011.03.008
12.
Triantafyllidis
,
N.
,
1980
, “
Bifurcation Phenomena in Pure Bending
,”
J. Mech. Phys. Solids
,
28
(
3–4
), pp.
221
245
.10.1016/0022-5096(80)90005-8
13.
Triantafyllidis
,
N.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
1982
, “
On the Development of Shear Bands in Pure Bending
,”
Int. J. Solids Struct.
,
18
(
2
), pp.
121
138
.10.1016/0020-7683(82)90021-X
14.
Allwood
,
J. M.
, and
Shouler
,
D. R.
,
2009
, “
Generalised Forming Limit Diagrams Showing Increased Forming Limits With Non-Planar Stress States
,”
Int. J. Plast.
,
25
(
7
), pp.
1207
1230
.10.1016/j.ijplas.2008.11.001
15.
Xia
,
Z. C.
, and
Zeng
,
D.
,
2008
, “
Sheet Metal Forming Limit Under Stretch-Bending
,” ASME International Manufacturing Science and Engineering Conference (ICMP2008), Evanston, IL, October 7–10,
ASME
Paper No. ICMP2008-72555, pp.
661
667
.10.1115/MSEC_ICMP2008-72555
16.
Tharrett
,
M.
, and
Stoughton
,
T.
,
2003
, “
Stretch-Bend Forming Limits of 1008 AK Steel, 70/30 Brass, and 6010 Aluminum
,” Tenth International Symposium on Plasticity and its Current Applications (PLASTICITY'03), Quebec, Canada, July 7–11, pp.
199
201
.
17.
Tharrett
,
M. R.
, and
Stoughton
,
T. B.
,
2003
, “
Stretch-Bend Forming Limits of 1008 AK Steel
,”
SAE
Technical Paper 2003-01-1157.10.4271/2003-01-1157
18.
Kitting
,
D.
,
Koplenig
,
M.
,
Ofenheimer
,
A.
,
Pauli
,
H.
, and
Till
,
E.
,
2009
, “
Application of a ‘Concave-Side Rule’ Approach for Assessing Formability of Stretch-Bent Steel Sheets
,”
Int. J. Mater. Forming
,
2
, pp.
427
430
.10.1007/s12289-009-0483-z
19.
Kitting
,
D.
,
Ofenheimer
,
A.
,
Pauli
,
H.
, and
Till
,
E.
,
2010
, “
A Phenomenological Concept to Predict Formability in Stretch-Bending Forming Operations
,”
Int. J. Mater. Forming
,
3
, pp.
1163
1166
.10.1007/s12289-010-0979-6
20.
He
,
J.
,
Xia
,
Z. C.
,
Li
,
S. H.
, and
Zeng
,
D.
, 2013, “
M–K Analysis of Forming Limit Diagram Under Stretch-Bending
,” ASME J. Manuf. Sci. Eng. (submitted).
21.
Xia
,
Z. C.
,
2001
, “
Failure Analysis of Tubular Hydroforming
,”
ASME J. Eng. Mater. Technol.
,
123
(
4
), pp.
423
429
.10.1115/1.1394966
22.
Yoshida
,
M.
,
Yoshida
,
F.
,
Konishi
,
H.
, and
Fukumoto
,
K.
,
2005
, “
Fracture Limits of Sheet Metals Under Stretch Bending
,”
Int. J. Mech. Sci.
,
47
(
12
), pp.
1885
1896
.10.1016/j.ijmecsci.2005.07.006
23.
Banabic
,
D.
,
Barlat
,
F.
,
Cazacu
,
O.
, and
Kuwabara
,
T.
,
2010
, “
Advances in Anisotropy and Formability
,”
Int. J. Mater. Forming
,
3
, pp.
165
189
.10.1007/s12289-010-0992-9
You do not currently have access to this content.