The incremental slitting or crack compliance method determines a residual stress profile from strain measurements taken as a slit is incrementally extended into the material. To date, the inverse calculation of residual stress from strain data conveniently adopts a two-dimensional, plane strain approximation for the calibration coefficients. This study provides the first characterization of the errors caused by the 2D approximation, which is a concern since inverse analyses tend to magnify such errors. Three-dimensional finite element calculations are used to study the effect of the out-of-plane dimension through a large scale parametric study over the sample width, Poisson's ratio, and strain gauge width. Energy and strain response to point loads at every slit depth is calculated giving pointwise measures of the out-of-plane constraint level (the scale between plane strain and plane stress). It is shown that the pointwise level of constraint varies with slit depth, a factor that makes the effective constraint a function of the residual stress to be measured. Using a series expansion inverse solution, the 3D simulated data of a representative set of residual stress profiles are reduced with 2D calibration coefficients to yield the error in stress. The sample width below which it is better to use plane stress compliances than plane strain is shown to be about 0.7 times the sample thickness; however, even using the better approximation, the rms stress errors sometimes still exceed 3% with peak errors exceeding 6% for Poisson's ratio 0.3, and errors increase sharply for larger Poisson's ratios. The error is significant, yet, error magnification from the inverse analysis in this case is mild compared to, e.g., plasticity based errors. Finally, a scalar correction (effective constraint) over the plane-strain coefficients is derived to minimize the root-mean-square (rms) stress error. Using the posed scalar correction, the error can be further cut in half for all widths and Poisson's ratios.

References

References
1.
Cheng
,
W.
, and
Finnie
,
I.
,
2007
,
Residual Stress Measurement and the Slitting Method
,
Springer
,
New York
.
2.
Aydiner
,
C. C.
,
Ustundag
,
E.
,
Prime
,
M. B.
, and
Peker
,
A.
,
2003
, “
Modeling and Measurement of Residual Stresses in a Bulk Metallic Glass Plate
,”
J. Non-Cryst. Solids
,
316
(
1
), pp.
82
95
.10.1016/S0022-3093(02)01940-3
3.
Kim
,
B.-S.
,
Bernet
,
N.
,
Sunderland
,
P.
, and
Møanson
,
J.-A.
,
2002
, “
Numerical Analysis of the Dimensional Stability of Thermoplastic Composites Using a Thermoviscoelastic Approach
,”
J. Compos. Mater.
,
36
(
20
), pp.
2389
2403
.10.1177/0021998302036020882
4.
Ersoy
,
N.
, and
Vardar
,
O.
,
2000
, “
Measurement of Residual Stresses in Layered Composites by Compliance Method
,”
J. Compos. Mater.
,
34
(
7
), pp.
575
598
.10.1177/002199830003400703
5.
Prime
,
M. B.
, and
Hill
,
M. R.
,
2004
, “
Measurement of Fiber-Scale Residual Stress Variation in a Metal-Matrix Composite
,”
J. Compos. Mater.
,
38
(
23
), pp.
2079
2095
.10.1177/0021998304045584
6.
Sabaté
,
N.
,
Vogel
,
D.
,
Gollhardt
,
A.
,
Keller
,
J.
,
Cané
,
C.
,
Grácia
, I
.
,
Morante
,
J.
, and
Michel
,
B.
,
2006
, “
Measurement of Residual Stress by Slot Milling With Focused Ion-Beam Equipment
,”
J. Micromech. Microeng.
,
16
(
2
), pp.
254
259
.10.1088/0960-1317/16/2/009
7.
Aydíner
,
C.
, and
Üstündag
,
E.
,
2005
, “
Residual Stresses in a Bulk Metallic Glass Cylinder Induced by Thermal Tempering
,”
Mech. Mater.
,
37
(
1
), pp.
201
212
.10.1016/j.mechmat.2004.03.001
8.
Prime
,
M. B.
, and
Hill
,
M. R.
,
2006
, “
Uncertainty, Model Error, and Order Selection for Series-Expanded, Residual-Stress Inverse Solutions
,”
Trans ASME J. Eng. Mater.
,
128
(
2
), pp.
175
185
.10.1115/1.2172278
9.
Lee
,
M. J.
, and
Hill
,
M. R.
,
2007
, “
Effect of Strain Gage Length When Determining Residual Stress by Slitting
,”
Trans ASME J. Eng. Mater.
,
129
(
1
), pp.
143
150
.10.1115/1.2400263
10.
Prime
,
M. B.
,
2010
, “
Plasticity Effects in Incremental Slitting Measurement of Residual Stresses
,”
Eng. Fract. Mech.
,
77
(
10
), pp.
1552
1566
.10.1016/j.engfracmech.2010.04.031
11.
Cheng
,
W.
, and
Finnie
, I
.
,
1997
, “
Computation of Mode I Stress Intensity Factors for Three-Dimensional Bodies Using Displacements at an Arbitrary Location
,”
Int. J. Fract.
,
83
(
1
), pp.
91
104
.10.1023/A:1007347918691
12.
Nervi
,
S.
, and
Szabó
,
B.
,
2007
, “
On the Estimation of Residual Stresses by the Crack Compliance Method
,”
Comput. Method Appl. Mech. Eng.
,
196
(
37–40
), pp.
3577
3584
.10.1016/j.cma.2006.10.037
13.
Fratini
,
L.
, and
Pasta
,
S.
,
2010
, “
On the Residual Stresses in Friction Stir-Welded Parts: Effect of the Geometry of the Joints
,”
Proc. Inst. Mech. Eng., Part L
,
224
(
4
), pp.
149
161
.10.1243/14644207JMDA337
14.
Schindler
,
H. J.
,
2000
, “
Residual Stress Measurement in Cracked Components: Capabilities and Limitations of the Cut Compliance Method
,”
Mater. Sci. Forum
,
347–349
, pp.
150
155
.10.4028/www.scientific.net/MSF.347-349.150
15.
Bueckner
,
H. F.
,
1958
, “
The Propagation of Cracks and the Energy of Elastic Deformation
,”
Trans. Am. Soc. Mech. Eng.
,
80
, pp.
1225
1230
.
16.
Schajer
,
G. S.
, and
Prime
,
M. B.
,
2006
, “
Use of Inverse Solutions for Residual Stress Measurements
,”
Trans. ASME J. Eng. Mater.
,
128
(
3
), pp.
375
382
.10.1115/1.2204952
17.
Dassault Systemés
,
2010
,
Abaqus FEA, D.S. Simulia
,
Dassualt Systemés
,
Dearborn, MI
.
18.
Lutz
,
M.
,
2009
,
Learning Python
,
4 ed.
O'Reilly Media
,
Sebastopol, CA
.
19.
Jones
,
E.
,
Oliphant
,
T.
, and
Peterson
,
P.
,
2001
, “
SciPy: Open Source Scientific Tools for Python
http://www.scipy.org/
20.
Parsons
, I
. D.
,
Hall
,
J. F.
, and
Rosakis
,
A.
,
1987
, “
A Finite Element Investigation of the Elastostatic State Near a Three Dimensional Edge Crack
,”
Proceedings of the 20th Midwestern Mechanics Conference
, Purdue University, West Lafayette, IN, August 31-September 2, Vol. 14b, pp.
729
734
.
21.
Nakamura
,
T.
, and
Parks
,
D. M.
,
1989
, “
Antisymmetrical 3-D Stress-Field Near the Crack Front of a Thin Elastic Plate
,”
Int. J. Solids Struct.
,
25
(
12
), pp.
1411
1426
.10.1016/0020-7683(89)90109-1
22.
Subramanya
,
H. Y.
,
Viswanath
,
S.
, and
Narasimhan
,
R.
,
2005
, “
A Three-Dimensional Numerical Study of Mixed Mode (I and II) Crack Tip Fields in Elastic-Plastic Solids
,”
Int. J. Fract.
,
136
(
1–4
), pp.
167
185
.10.1007/s10704-005-5422-5
23.
Khan
,
S. M. A.
,
2012
, “
Effect of the Thickness on the Mixed Mode Crack Front Fields
,”
Struct. Eng. Mech.
,
42
(
5
), pp.
701
713
.
24.
Cheng
,
W.
,
Finnie
, I
.
, and
Vardar
,
O.
,
1992
, “
Deformation of an Edge-Cracked Strip Subjected to Normal Surface Traction on the Crack Faces
,”
Eng. Fract. Mech.
,
42
(
1
), pp.
97
107
.10.1016/0013-7944(92)90281-I
25.
Schindler
,
H. J.
,
Cheng
,
W.
, and
Finnie
, I
.
,
1997
, “
Experimental Determination of Stress Intensity Factors Due to Residual Stresses
,”
Exp. Mech.
,
37
(
3
), pp.
272
277
.10.1007/BF02317418
You do not currently have access to this content.