The low cycle fatigue behavior of Alloy 617 has been evaluated at 850 °C and 950 °C, the temperature range of particular interest for the intermediate heat exchanger on a proposed high-temperature gas-cooled nuclear reactor. Cycles to failure were measured as a function of total strain range and varying strain rate. Results of the current experiments compare well with previous work reported in the literature for a similar range of temperatures and strain rate. The combined data demonstrate a Coffin–Manson relationship, although the slope of the Coffin–Manson fit is close to −1 rather than the typically reported value of −0.5. At 850 °C and a strain rate of 10−3 /s Alloy 617 deforms by a plastic flow mechanism in low cycle fatigue and exhibits some cyclic hardening. At 950 °C for strain rates of 10−3–10−5 /s, Alloy 617 deforms by a solute drag creep mechanism during low cycle fatigue and does not show significant cyclic hardening or softening. At this temperature the strain rate has little influence on the cycles to failure for the strain ranges tested.

References

References
1.
Baxi
,
C. B.
,
Shenoy
,
A.
,
Kostin
,
V. I.
,
Kodochigov
,
N. G.
,
Vasyaev
,
A. V.
,
Belov
,
S. E.
, and
Golovko
,
V. F.
,
2008
, “
Evaluation of Alternate Power Conversion Unit Designs for the GT-MHR
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
2995
3001
.10.1016/j.nucengdes.2007.12.021
2.
Koster
,
A.
,
Matzner
,
H. D.
, and
Nicholsi
,
D. R.
,
2003
, “
PBMR Design for the Future
,”
Nucl. Eng. Des.
,
222
, pp.
231
245
.10.1016/S0029-5493(03)00029-3
3.
Lommers
,
L. J.
,
Shahrokhi
,
F.
,
Mayer
III,
J. A.
, and
Southworth
,
F. H.
,
2012
, “
AREVA HTR Concept for Near-Term Deployment
,”
Nucl. Eng. Des.
,
251
, pp.
292
296
.10.1016/j.nucengdes.2011.10.030
4.
Corum
,
J. M.
, and
Blass
,
J. J.
,
1991
, “
Rules for Design of Alloy 617 Nuclear Components to Very High Temperatures
,”
Pres. Ves. P.
,
215
, pp.
147
153
.
5.
Nickel
,
H.
,
Bodmann
,
E.
, and
Seehafer
,
H. J.
,
1991
, “
The Materials Program for the HTR in the FRG: Integrity Concept, Status of the Development of High Temperature Materials and Design Codes
,”
Energy
,
16
(
1/2
), pp.
221
242
.10.1016/0360-5442(91)90102-R
6.
ASME International
,
2004
, “
Boiler & Pressure Vessel Code Section I
,” Rules for Construction of Power Boilers.
7.
ASME International
,
2004
, “
Boiler & Pressure Vessel Code Section VIII
,” Rules for Construction of Pressure Vessels.
8.
ASME International
,
2007
, “
Boiler & Pressure Vessel Code, Section III, Division 1
,” Subsection NH—Class 1 Components in Elevated Temperature Service.
9.
Rao
,
K. B. S.
,
Meurer
,
H. P.
, and
Schuster
,
H.
,
1988
, “
Creep-Fatigue Interaction of Inconel 617 at 950 °C in Simulated Nuclear Reactor Helium
,”
Mater. Sci. Eng.: A
,
104
, pp.
37
51
.10.1016/0025-5416(88)90404-1
10.
Rao
,
K. B. S.
,
Schiffers
,
H.
,
Schuster
,
H.
, and
Nickel
,
H.
,
1988
, “
Influence of Time and Temperature Dependent Processes on Strain Controlled Low Cycle Fatigue Behavior of Alloy 617
,”
Metall. Trans. A
,
19
(2), pp.
359
371
.10.1007/BF02652546
11.
Yukawa
,
S
.,
1991
, “
Elevated Temperature Fatigue Design Curves for Ni-Cr-Co-Mo Alloy 617
,”
1st JSME/ASME Joint International Conference on Nuclear Engineering, Tokyo, Japan
, November 4–7.
12.
ASTM International
,
2008
, Standard Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696) and Nickel-Chromium Cobalt Molybdenum Alloy (UNS N06617) Plate, Sheet, and Strip.
13.
ASTM International
,
2004
, E606-04 Standard Practice for Strain-Controlled Fatigue Testing.
14.
Carroll
,
L.
,
Cabet
,
C.
, and
Wright
,
R. N.
,
2010
, “
The Role of Environment on High Temperature Creep-Fatigue Behavior of Alloy 617
” Proceedings of the ASME 2010 Pressure Vessel and Piping Division Conference (
PVP2010
), Bellevue, WA, July 18–22, ASME Paper No. PVP2010-26126, pp. 907–916.10.1115/PVP2010-26126
15.
Totemeier
,
T.
, and
Tian
,
H.
,
2007
, “
Creep-Fatigue-Environment Interactions in Inconel 617
,”
Mater. Sci. Eng.
,
468–470
, pp.
81
87
.10.1016/j.msea.2006.10.170
16.
Carroll
,
L. J.
,
Cabet
,
C.
,
Carroll
,
M. C.
, and
Wright
,
R. N.
,
2013
, “
The Development of Microstructural Damage During Creep-Fatigue of a Nickel Alloy
,”
Int. J. Fatigue
,
47
, pp. 115–125.10.1016/j.ijfatigue.2012.07.016
17.
Totemeier
,
T. C.
,
2007
, “
High-Temperature Creep-Fatigue of Alloy 617 Base Metal and Weldments
,” Eighth International Conference on Creep and Fatigue at Elevated Temperatures (
CREEP8
), San Antonio, TX, July 22–26, ASME Paper No. CREEP2007-26372, pp.
255
-
260
.10.1115/CREEP2007-26372
18.
Wright
,
J. K.
,
Carroll
,
L. J.
,
Cabet
,
C.
,
Lillo
,
T. M.
,
Benz
,
J. K.
,
Simpson
,
J. A.
,
Lloyd
,
W. R.
,
Chapman
,
J. A.
, and
Wright
,
R. N.
,
2012
, “
Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys
,”
Nucl. Eng. Des.
,
251
, pp. 252–260.10.1016/j.nucengdes.2011.10.034
19.
Meurer
,
H. P.
,
Gnirss
,
G. K. H.
,
Mergler
,
W.
,
Raule
,
G.
,
Schuster
,
H.
, and
Ullrich
,
G.
,
1984
, “
Investigations on the Fatigue Behavior of High-Temperature Alloys for High-Temperature Gas-Cooled Reactor Components
,”
Nucl. Tech.
,
66
(
2
), pp.
315
323
.
20.
Coffin
,
L. F.
, and
Travernelli
,
J. F.
,
1959
, “
The Cyclic Straining and Fatigue of Metals
,”
Trans. TMS-AIME
,
215
(
5
), pp.
794
806
.
21.
Manson
,
S. S.
, and
Hirschberg
,
M. H.
,
1963
, “
Fatigue Behavior in Strain Cycling in the Low and Intermediate Cycle Range
,”
10th Sagamore Army Materials Research Conference, Raquette Lake, NY
, August 13–16.
22.
Vecchio
,
K. S.
,
Fitzpatrick
,
M. D.
, and
Klarstrom
,
D.
,
1995
, “
Influence of Subsolvus Thermomechanical Processing on the Low-Cycle Fatigue Properties of Haynes 230 Alloy
,”
Metall. Mater. Trans. A
,
26
(3), pp.
673
689
.10.1007/BF02663917
23.
Lu
,
Y. L.
,
Chen
,
L. J.
,
Wang
,
G. Y.
,
Benson
,
M. L.
,
Liaw
,
P. K.
,
Thompson
,
S. A.
,
Blust
,
J. W.
,
Browning
,
P. F.
,
Bhattacharya
,
A. K.
,
Aurrecoechea
,
J. M.
, and
Klarstrom
,
D. L.
,
2005
, “
Hold-Time Effects on Low-Cycle Fatigue Behavior of Haynes 230 Superalloy at High Temperatures
,”
Mater. Sci. Eng. A
,
409
(
1–2
), pp.
282
291
.10.1016/j.msea.2005.05.120
24.
Brechet
,
Y.
,
Magnin
,
T.
, and
Sornette
,
D.
,
1992
, “
The Coffin-Manson Law as a Consequence of the Statistical Nature of the Lcf Surface Damage
,”
Acta Metall. Mater.
,
40
, pp.
2281
2287
.10.1016/0956-7151(92)90146-6
25.
Murakami
,
Y
.,
1988
, “
Correlation Between Strain Singularity at Crack Tip Under Overall Plastic Deformation and the Exponent of the Coffin-Manson Law
,”
Low Cycle Fatigue, ASTM STP 942
,
ASTM
,
Philadelphia
.
26.
Sherby
,
O. D.
, and
Burke
,
P. M.
,
1968
, “
Mechanical Behavior of Crystalline Solids at Elevated Temperature
,”
Prog. Mater. Sci.
,
13
, pp.
325
390
.10.1016/0079-6425(68)90024-8
27.
Taleff
,
E. M.
,
Green
,
W. P.
,
Kulas
,
M.-A.
,
Mcnelley
,
T. R.
, and
Krajewski
,
P. E.
,
2005
, “
Analysis, Representation and Prediction of Creep Transients in Class I Alloys
,”
Mater. Sci. Eng. A
,
410–411
, pp.
32
37
.10.1016/j.msea.2005.08.085
28.
Kulas
,
M.-A.
,
Green
,
W. P.
,
Taleff
,
E. M.
,
Krajewski
,
P. E.
, and
Mcnelley
,
T. R.
,
2005
, “
Deformation Mechanisms in Superplastic AA5083 Materials
,”
Metall. Mater. Trans. A
,
36
(5), pp.
1249
1261
.10.1007/s11661-005-0217-x
You do not currently have access to this content.