The role of thermal stresses, understood as stresses introduced by a uniform or nonuniform temperature change in a body which is somehow constrained against expansion or contraction, in metallic materials due to extreme loading conditions is under consideration. The thermomechanical couplings (thermal expansion and thermal plastic softening phenomena) have a fundamental impact on damage and localization phenomena due to their influence on the propagation and interaction of the deformation waves. Such processes include strain rates over 107s-1 and temperatures reaching the melting point. It should be emphasized, that apart from thermal effects, the anisotropy of damage (both initial and induced by deformation) plays a central role in the overall process. The aforementioned dynamic events are described in this paper in terms of the Perzyna's type viscoplasticity model recently developed by the authors, including the anisotropic damage. The discussed constitutive structure has a deep physical interpretation derived from the analysis of a single crystal and polycrystal behaviors.

References

References
1.
Rusinek
,
A.
, and
Klepaczko
,
J. R.
,
2009
, “
Experiments on Heat Generated During Plastic Deformation and Stored Energy for Trip Steels
,”
Mater. Des.
,
30
(
1
), pp.
35
48
.10.1016/j.matdes.2008.04.048
2.
Guduru
,
P. R.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2001
, “
Dynamic Shear Bands: An Investigation Using High Speed Optical and Infrared Diagnostic
,”
Mech. Mater.
,
33
, pp.
371
402
.10.1016/S0167-6636(01)00051-5
3.
Zbib
,
H. M.
, and
Diaz de la Rubia
,
T.
,
2002
, “
A Multiscale Model of Plasticity
,”
Int. J. Plast.
,
18
, pp.
1133
1163
.10.1016/S0749-6419(01)00044-4
4.
Voyiadjis
,
G. Z.
, and
R. K.
,
Abu Al-Rub
,
R. K.
,
2006
, “
A Finite Strain Plastic-Damage Model for High Velocity Impacts Using Combined Viscosity and Gradient Localization Limiters—Part II: Numerical Aspects and Simulations
,”
Int. J. Damage Mech.
,
15
(
4
), pp.
335
373
.10.1177/1056789506058047
5.
Łodygowski
,
T.
,
Rusinek
,
A.
,
Jankowiak
,
T.
, and
Sumelka
,
W.
,
2012
, “
Selected Topics of High Speed Machining Analysis
,”
Eng. Trans.
,
60
(
1
), pp.
69
96
.
6.
Perzyna
,
P.
,
2008
, “
The Thermodynamical Theory of Elasto-Viscoplasticity Accounting for Microshear Banding and Induced Anisotropy Effects
,”
Mechanics
,
27
(
1
), pp.
25
42
.
7.
Perzyna
,
P.
,
2005
,
The Thermodynamical Theory of Elasto-Viscoplasticity
,”
Eng. Trans.
,
53
, pp.
235
316
.
8.
Sumelka
,
W.
,
2009
,
The Constitutive Model of the Anisotropy Evolution for Metals With Microstructural Defects
,
Poznań University of Technology
,
Poznań, Poland
.
9.
Sumelka
,
W.
, and
Łodygowski
,
T.
,
2011
, “
The Influence of the Initial Microdamage Anisotropy on Macrodamage Mode During Extremely Fast Thermomechanical Processes
,”
Arch. Appl. Mech.
,
8
(
12
), pp.
1973
1992
.10.1007/s00419-011-0531-2
10.
Kachanov
,
L. M.
,
1958
, “
On the Creep Fracture Time
,”
Izv. Akad. Nauk SSR, Otd. Tekh. Nauk
,
8
, pp.
26
31
.
11.
Voyiadjis
,
G. Z.
,
Yousef
,
M. A.
, and
Kattan
,
P. I.
,
2012
, “
New Tensors for Anisotropic Damage in Continuum Damage Mechanics
,”
ASME J. Eng. Mater. Technol.
,
134
(
2
), p. 021015.10.1115/1.4006067
12.
Łodygowski
,
T.
,
1996
, “
Theoretical and Numerical Aspects of Plastic Strain Localization
,”
D.Sc. thesis
,
Poznań University of Technology
,
Poznań, Poland
.
13.
Voyiadjis
,
G. Z.
, and
Abu Al-Rub
,
R. K.
,
2005
, “
Gradient Plasticity Theory With a Variable Length Scale Parameter
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
3998
4029
.10.1016/j.ijsolstr.2004.12.010
14.
Marsden
,
J. E.
, and
Hughes
,
T. J. H.
,
1983
,
Mathematical Foundations of Elasticity
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Truesdell
,
C.
, and
Noll
,
W.
,
1965
, “
The Non-Linear Field Theories of Mechanics
,”
Handbuch der Physik
, Vol.
III/3
,
S.
Flügge
, ed.,
Springer-Verlag
,
Berlin
.
16.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strain
,”
ASME J. Appl.Mech.
,
36
, pp.
1
6
.10.1115/1.3564580
17.
Perzyna
,
P.
,
1986
, “
Internal State Variable Description of Dynamic Fracture of Ductile Solids
,”
Int. J. Solids Struct.
,
22
, pp.
797
818
.10.1016/0020-7683(86)90123-X
18.
Perzyna
,
P.
,
1963
, “
The Constitutive Equations for Rate Sensitive Plastic Materials
,”
Q. Appl. Math.
,
20
, pp.
321
332
.10.1016/S0065-2156(08)70009-7
19.
Perzyna
,
P.
,
1966
, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
,
9
, pp.
243
377
.10.1016/S0065-2156(08)70009-7
20.
Shima
,
S.
, and
Oyane
,
M.
,
1976
, “
Plasticity for Porous Solids
,”
Int. J. Mech. Sci.
,
18
, pp.
285
291
.10.1016/0020-7403(76)90030-8
21.
Perzyna
,
P.
,
1986
, “
Constitutive Modelling for Brittle Dynamic Fracture in Dissipative Solids
,”
Arch. Mech.
,
38
, pp.
725
738
.
22.
Glema
,
A.
,
Łodygowski
,
T.
,
Sumelka
,
W.
, and
Perzyna
,
P.
,
2009
, “
The Numerical Analysis of the Intrinsic Anisotropic Microdamage Evolution in Elasto-Viscoplastic Solids
,”
Int. J. Damage Mech.
,
18
(
3
), pp.
205
231
10.1177/1056789508097543
23.
Nemes
,
J. A.
, and
Eftis
,
J.
,
1993
, “
Constitutive Modelling of the Dynamic Fracture of Smooth Tensile Bars
,”
Int. J. Plast.
,
9
(
2
), pp.
243
270
.10.1016/0749-6419(93)90031-K
24.
Dornowski
,
W.
,
1999
, “
Influence of Finite Deformations on the Growth Mechanism of Microvoids Contained in Structural Metals
,”
Arch. Mech.
,
51
(
1
), pp.
71
86
.
25.
Łodygowski
,
T.
,
Glema
,
A.
, and
W.
Sumelka
,
W.
,
2008
, “
Anisotropy Induced by Evolution of Microstructure in Ductile Material
,”
8th World Congress on Computational Mechanics (WCCM8), 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008)
,
Venice, Italy
, June 30–July 5.
26.
Perzyna
,
P.
,
1994
, “
Instability Phenomena and Adiabatic Shear Band Localization in Thermoplastic Flow Process
,”
Acta Mech.
,
106
, pp.
173
205
.10.1007/BF01213561
27.
Łodygowski
,
T.
, and
Perzyna
,
P.
,
1997
, “
Localized Fracture of Inelastic Polycrystalline Solids Under Dynamic Loading Process
,”
Int. J. Damage Mech.
,
6
, pp.
364
407
.10.1177/105678959700600402
28.
Łodygowski
,
T.
, and
Perzyna
,
P.
,
1997
, “
Numerical Modelling of Localized Fracture of Inelastic Solids in Dynamic Loading Process
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
4137
4158
.10.1002/(SICI)1097-0207(19971130)40:22<4137::AID-NME260>3.0.CO;2-5
29.
Nemat-Nasser
,
S.
, and
Guo
,
W.-G.
,
2005
, “
Thermomechanical Response of HSLA-65 Steel Plates: Experiments and Modeling
,”
Mech. Mater.
,
37
, pp.
379
405
.10.1016/j.mechmat.2003.08.017
30.
Nemes
,
J. A.
, and
Eftis
,
J.
,
1991
, “
Several Features of a Viscoplastic Study of Plate-Impact Spallation With Multidimensional Strain
,”
Comput. Struct.
,
38
(
3
), pp.
317
328
.10.1016/0045-7949(91)90109-Y
31.
Song
,
J.-H.
,
Wang
,
H.
, and
Belytschko
,
T.
,
2008
, “
A Comparative Study on Finite Element Methods for Dynamic Fracture
,”
Comput. Mech.
,
42
, pp.
239
250
.10.1007/s00466-007-0210-x
32.
Simulia Corp.
,
2012
, “Abaqus Version 6.12 Theory Manual,” Dassault Systèmes Simulia Corp., Providence, RI.
33.
Glema
,
A.
,
2004
, “
Analysis of Wave Nature in Plastic Strain Localization in Solids
,”
Rozprawy
, Vol.
379
,
Poznań University of Technology
,
Poznań, Poland
(in Polish).
You do not currently have access to this content.