Magnetorheological elastomers (MREs) are adaptive composite materials in the sense that their mechanical properties are tailored by the applied magnetic field. In this paper we developed both isotropic and anisotropic silicone-rubber-based MREs. We examined the zero-magnetic-field dynamic stiffness and damping along with the magnetic field induced changes (the magnetorheological (MR) effect) for the viscoelastic properties of the MREs by conducting both compression and shear investigations. While the anisotropic MREs exhibited substantial magnetic-field-dependent viscoelastic properties at a medium magnetic field, the isotropic ones showed a negligible MR effect. The magnetic filler structure and concentration, loading frequency, and dynamic strain amplitude were all confirmed to play significant roles in the dynamic mechanical performance of the MREs.

References

References
1.
Carlson
,
J. D.
, and
Jolly
,
M. R.
,
2000
, “
MR Fluid Foam and Elastomer Devices
,”
Mechatronics
10
, pp.
555
569
.10.1016/S0957-4158(99)00064-1
2.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Clark
,
S. M.
,
2000
, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
Proc. SPIE
,
3985
, pp.
418
425
.10.1117/12.388844
3.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Tardiff
,
J. L.
,
1999
, “
Magnetorheological Elastomers: Properties and Applications
,”
Proc. SPIE
,
3675
, pp.
131
138
.10.1117/12.352787
4.
Kallio
,
M.
,
Lindroos
,
T.
,
Aalto
,
S.
,
Jarvinen
,
E.
,
Karna
,
T.
, and
Meinander
,
T.
,
2007
, “
Dynamic Compression Testing of a Tunable Spring Element Consisting of a Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
16
, pp.
506
514
.10.1088/0964-1726/16/2/032
5.
Bellan
,
C.
, and
Bossis
,
G.
,
2002
, “
Field Dependence of Viscoelastic Properties of MR Elastomers
,”
Int. J. Mod. Phys. B
,
16
, pp.
2447
2453
.10.1142/S0217979202012499
6.
Fuchs
,
A.
,
Zhang
,
Q.
,
Elkins
,
J.
,
Gordaninejad
,
F.
, and
Evrensel
,
C.
,
2007
, “
Development and Characterization of Magnetorheological Elastomers
,”
J. Appl. Polym. Sci.
,
105
, pp.
2497
2508
.10.1002/app.24348
7.
Varga
,
Z.
,
Filipcsei
,
G.
, and
Zrinyi
,
M.
,
2006
, “
Magnetic Field Sensitive Functional Elastomers With Tuneable Elastic Modulus
,”
Polymer
,
47
, pp.
227
233
.10.1016/j.polymer.2005.10.139
8.
Farshad
,
M.
, and
Benine
,
A.
,
2004
, “
Magnetoactive Elastomer Composites
,”
Polym. Test.
,
23
, pp.
347
353
.10.1016/S0142-9418(03)00103-X
9.
Jolly
,
M. R.
,
Carlson
,
J. D.
,
Munoz
,
B. C.
, and
Bullions
,
T. A.
,
1996
, “
The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
613
622
.10.1177/1045389X9600700601
10.
Bose
,
H.
,
2007
, “
Viscoelastic Properties of Silicone-Based Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
,
21
, pp.
4790
4797
.10.1142/S0217979207045670
11.
Zhou
,
G. Y.
,
2003
, “
Shear Properties of a Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
12
, pp.
139
146
.10.1088/0964-1726/12/1/316
12.
Zajac
,
P.
,
Kaleta
,
J.
,
Lewandowski
,
D.
, and
Gasperowicz
,
A.
,
2010
, “
Isotropic Magnetorheological Elastomers With Thermoplastic Matrices: Structure Damping Properties and Testing
,”
Smart Mater. Struct.
,
19
, p.
045014
.10.1088/0964-1726/19/4/045014
13.
Chen
,
L.
,
Gong
,
X. L.
, and
Li
,
W. H.
,
2007
, “
Microstructures and Viscoelastic Properties of Anisotropic Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
16
, pp.
2645
2650
.10.1088/0964-1726/16/6/069
14.
Wu
,
J. K.
,
Gong
,
X. L.
,
Fan
,
Y. C.
, and
Xia
,
H. S.
,
2010
, “
Anisotropic Polyurethane Magnetorheological Elastomer Prepared Through In Situ Polycondensation Under a Magnetic Field
,”
Smart Mater. Struct.
,
19
, p.
105007
.10.1088/0964-1726/19/10/105007
15.
Lokander
,
M.
and
Stenberg
,
B.
,
2003
, “
Improving the Magnetorheological Effect in Isotropic Magnetorheological Rubber Materials
,”
Polym. Test.
,
22
, pp.
677
680
.10.1016/S0142-9418(02)00175-7
16.
Sun
,
T. L.
,
Gong
,
X. L.
,
Jiang
,
W. Q.
,
Li
,
J. F.
,
Xu
,
Z. B.
, and
Li
,
W. H.
,
2008
, “
Study on the Damping Properties of Magnetorheological Elastomers Based on Cis–Polybutadiene Rubber
,”
Polym. Test.
27
, pp.
520
526
.10.1016/j.polymertesting.2008.02.008
17.
Stepanov
,
G. V.
,
Abramchuk
,
S. S.
,
Grishin
,
D. A.
,
Nikitin
,
L. V.
,
Kramarenko
,
E. Y.
, and
Khokhlov
,
A. R.
,
2007
, “
Effect of a Homogeneous Magnetic Field on the Viscoelastic Behavior of Magnetic Elastomers
,”
Polymer
,
48
, pp.
488
495
.10.1016/j.polymer.2006.11.044
18.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge, England
.
19.
Yin
,
H. M.
, and
Sun
,
L. Z.
,
2005
, “
Magnetoelasticity of Chain-Structured Ferromagnetic Composites
,”
Appl. Phys. Lett.
,
86
, p.
261901
.10.1063/1.1954895
20.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Chen
,
J. S.
,
2006
, “
Magneto-Elastic Modeling of Composites Containing Chain-Structured Magnetostrictive Particles
,”
J. Mech. Phys. Solids
,
54
, pp.
975
1003
.10.1016/j.jmps.2005.11.007
21.
Payne
,
A. R.
,
1962
, “
The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates—Part I
,”
J. Appl. Polym. Sci.
,
6
, pp.
57
63
.10.1002/app.1962.070061906
22.
Lion
,
A.
,
Kardelky
,
C.
, and
Haupt
,
P.
,
2003
, “
On the Frequency and Amplitude Dependence of the Payne Effect: Theory and Experiments
,”
Rubber Chem. Technol.
,
76
, pp.
533
547
.10.5254/1.3547759
23.
Jolly
,
M. R.
,
Carlson
,
J. D.
, and
Munoz
,
B. C.
,
1996
, “
A Model of the Behaviour of Magnetorheological Materials
,”
Smart Mater. Struct.
,
5
, pp.
607
614
.10.1088/0964-1726/5/5/009
24.
Shen
,
Y.
,
Golnaraghi
,
M. F.
, and
Heppler
G. R.
,
2004
, “
Experimental Research and Modeling of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
15
pp.
27
35
.10.1177/1045389X04039264
You do not currently have access to this content.