To study the strain hardening in nanoscale multilayer metallic (NMM) composites, atomistic simulations of nanoindentation are performed on CuNi, CuNb, and CuNiNb multilayers. The load-depth data were converted to hardness-strain data that were then modeled using power law. The plastic deformation of the multilayers is closely examined. It is found that the strain hardening in the incoherent CuNb and NiNb interfaces is stronger than the coherent CuNi interface. The hardening parameters are discovered to be closely related to the density of the dislocations in the incoherent interfaces, which in turn is found to have power law dependence on two length scales: indentation depth and layer thickness. Based on these results, a constitutive law for extracting strain hardening in NMM from nanoindentation data is developed.

References

1.
Was
,
G. S.
, and
Foecke
,
T.
,
1996
, “
Deformation and Fracture in Microlaminates
,”
Thin Solid Films
,
286
.10.1016/S0040-6090(96)08905-5
2.
Clemens
,
B. M.
,
Kung
,
H.
, and
Barnett
,
S. A.
,
1999
, “
Structure and Strength of Multilayers
,”
MRS Bull.
,
24
(
2
), p.
20
.
3.
Misra
,
A.
, and
Kung
,
H.
,
2001
, “
Deformation Behavior of Nanostructured Metallic Multilayers
,”
Adv. Eng. Mater.
,
3
, p.
217
.10.1002/1527-2648(200104)3:4<217::AID-ADEM217>3.0.CO;2-5
4.
Rao
,
S. I.
, and
Hazzledine
,
P. M.
,
2000
, “
Atomistic Simulations of Dislocation-Interface Interactions in the Cu-Ni Multilayer System
,”
Phil. Mag. A
,
80
, pp.
2011
2040
.10.1080/01418610008212148
5.
Hoagland
,
R. G.
,
Mitchell
,
T. E.
,
Hirth
,
J. P.
, and
Kung
,
H.
,
2002
, “
On the Strengthening Effects of Interfaces in Multilayer Fee Metallic Composites
,”
Phil. Mag. A
,
82
(4)
, pp.
643
664
.10.1080/01418610208243194
6.
Hoagland
,
R. G.
,
Hirth
,
J. P.
, and
Misra
,
A.
,
2006
, “
On the Role of Weak Interfaces in Blocking Slip in Nanoscale Layered Composites
,”
Phil. Mag.
,
86
(23)
, pp.
3537
3558
.10.1080/14786430600669790
7.
Misra
,
A.
,
Hirth
,
J. P.
, and
Kung
,
H.
,
2002
, “
Single-Dislocation-Based Strengthening Mechanisms in Nanoscale Metallic Multilayers
,”
Phil. Mag. A
,
82
(16)
, pp.
2935
2951
.10.1080/01418610208239626
8.
Misra
,
A.
,
Hirth
,
J. P.
, and
Hoagland
,
R. G.
,
2005
, “
Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites
,”
Acta Mater.
,
53
, pp.
4817
4824
.10.1016/j.actamat.2005.06.025
9.
Wang
,
J.
,
Hoagland
,
R. G.
,
Hirth
,
J. P.
, and
Misra
,
A.
,
2008
, “
Atomistic Modeling of the Interaction of Glide Dislocations With “Weak” Interfaces
,”
Acta Mater.
,
56
, p.
5685
.10.1016/j.actamat.2008.07.041
10.
Mastorakos
,
I. N.
,
Zbib
,
H. M.
, and
Bahr
,
D. F.
,
2009
, “
Deformation Mechanisms and Strength in Nanoscale Multilayer Metallic Composites With Coherent and Incoherent Interfaces
,”
Appl. Phys. Lett.
,
94
, p.
173114
.10.1063/1.3129166
11.
Akasheh
,
F.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Hoagland
,
R. G.
, and
Misra
,
A. J.
,
2007
, “
Dislocation Dynamics Analysis of Dislocation Intersections in Nanoscale Metallic Multilayered Composites
,”
Appl. Phys.
,
101
, p.
084314
.10.1063/1.2721093
12.
Akasheh
,
F.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Hoagland
,
R. G.
, and
Misra
,
A. J.
,
2007
, “
Interactions Between Glide Dislocations and Parallel Interfacial Dislocations in Nanoscale Strained Layers
,”
Appl. Phys.
,
102
, p.
034314
.10.1063/1.2757082
13.
Medyanik
,
S. N.
, and
Shao
,
S.
,
2009
, “
Strengthening Effects of Coherent Interfaces in Nanoscale Metallic Bilayers
,”
Comp. Mater. Sci.
,
45
, p.
1129
.10.1016/j.commatsci.2009.01.013
14.
Shao
,
S.
, and
Medyanik
,
S. N.
,
2010
, “
Dislocation-Interface Interaction in Nanoscale fcc Metallic Bilayers
,”
Mech. Res. Comm.
,
37
, p.
315
.10.1016/j.mechrescom.2010.03.007
15.
Shao
,
S.
, and
Medyanik
,
S. N.
,
2010
, “
Interaction of Dislocations With Incoherent Interfaces in Nanoscale FCC-BCC Metallic Bi-Layers
,”
Modeling Simul. Mater. Sci. Eng.
,
18
, p.
055010
.10.1088/0965-0393/18/5/055010
16.
Overman
,
N. R.
,
Overman
,
C. T.
,
Zbib
,
H. M.
, and
Bahr
,
D. F.
,
2009
, “
Yield and Deformation in Biaxially Stressed Multilayer Metallic Thin Films
,”
J. Eng. Mater. Tech.
,
131
, p.
041203-1
.10.1115/1.3183775
17.
Bellou
,
A.
,
Overman
,
C. T.
,
Zbib
,
H. M.
,
Bahr
,
D. F.
, and
Misra
,
A.
,
2010
, “
Strength and Strain Hardening Behavior of Cu-Based Bilayers and Trilayers
,”
Script. Mater.
,
64
, pp.
641
644
.10.1016/j.scriptamat.2010.12.009
18.
Misra
,
A.
,
Zhang
,
X.
,
Hammon
,
D.
, and
Hoagland
,
R. G.
,
2004
, “
Work Hardening in Rolled Nanolayered Metallic Composites
,”
Acta Mater.
,
53
, pp.
221
226
.10.1016/j.actamat.2004.09.018
19.
Van Vliet
,
K. J.
,
Li
,
J.
,
Zhu
,
T.
,
Yip
,
S.
, and
Suresh
,
S.
,
2003
, “
Quantifying the Early Stages of Plasticity Through Nanoscale Experiments and Simulations
,”
Phys. Rev. B
,
67
, p.
104105
.10.1103/PhysRevB.67.104105
20.
Ju
,
S. P.
,
Wang
,
C. T.
,
Chien
,
C. H.
,
Huang
,
J. C.
, and
Jian
,
S. R.
,
2007
, “
The Nanoindentation Responses of Nickel Surfaces With Different Crystal Orientations
,”
Molecular Simul.
,
33
, p.
905
.10.1080/08927020701392954
21.
Hasnaoui
,
A.
,
Derlet
,
P. M.
, and
Swygenhoven
,
H. V.
,
2004
, “
Interaction Between Dislocations and Grain Boundaries Under an Indenter—A Molecular Dynamics Simulation
,”
Acta Mater.
,
52
, p.
2251
.10.1016/j.actamat.2004.01.018
22.
Saraev
,
D.
, and
Miller
,
R. E.
,
2005
, “
Atomistic Simulation of Nanoindentation Into Copper Multilayers
,”
Model. Simul. Mater. Sci. Eng.
,
13
, p.
1089
.10.1088/0965-0393/13/7/006
23.
Saraev
,
D.
, and
Miller
,
R. E.
,
2006
, “
Atomic-Scale Simuluations of Nanoindentation-Induced Plasticity in Copper Crystals With Nanometer-Sized Nickel Coatings
,”
Acta Mater.
,
54
, pp.
33
45
.10.1016/j.actamat.2005.08.030
24.
Mastorakos
,
I. N.
,
Bellou
,
A.
,
Bahr
,
D. F.
, and
Zbib
,
H. M.
,
2011
, “
Size-Dependent Strength in Nanolaminate Metallic Systems
,”
J. Mater. Res.
,
26
, p.
1179
.10.1557/jmr.2011.120
25.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
26.
Sandia National Laboratories,
2012
, “
LAMMPS Molecular Dynamics Simulator
,” lammps.sandia.gov
27.
Voter
,
A. F.
, and
Chen
,
S. P.
,
1987
, “
Accurate Interatomic Potentials for Ni, Al and Ni3Al
,”
Mater. Res. Soc. Symp. Proc.
,
186
, p.
175
.
28.
Zhang
,
Q.
,
Lai
,
W. S.
, and
Liu
,
B. X.
,
2000
, “
Atomic Structure and Physical Properties of Ni-Nb Amorphous Alloys Determined by an n-Body Potential
,”
J. Noncryst. Solids
,
261
, p.
137
.10.1016/S0022-3093(99)00603-1
29.
Salehinia
,
I.
, and
Medyanik
,
S. N.
,
2011
, “
Effects of Vacancies on the Onset of Plasticity in Metals—An Atomistic Simulation Study
,”
Metal. Mater. Trans.
,
42
(
13
), pp.
3868
3874
.10.1007/s11661-011-0653-8
30.
Johnson
,
K. L.
,
1970
, “
The Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
,
18
, p.
115
.10.1016/0022-5096(70)90029-3
31.
O'Neil
,
H.
,
1951
,
Hardness Measurements of Metals and Alloys
.
Chapman Hall
,
London
.
32.
O'Neil
,
H.
,
1944
, “
The Significance of Tensile and Other Mechanical Test Properties of Metals
,”
Proc. Inst. Mech. Eng.
,
151
, p.
116
.10.1243/PIME_PROC_1944_151_022_02
33.
Tabor
,
D.
,
1951
,
The Hardness of Metals
.
Clarendon Press
,
Oxford, UK
.
34.
Heino
,
P.
,
2001
, “
Microstructure and Shear Strength of a Cu-Ta Interface
,”
Comp. Mater. Sci.
,
20
, pp.
157
167
.10.1016/S0927-0256(00)00173-7
You do not currently have access to this content.