A controversy exists among literature reports of constraints on elastic constants. In particular, it has been reported that embedded atom method (EAM) potentials generally impose three constraints on elastic constants of crystals that are inconsistent with experiments. However, it can be shown that some EAM potentials do not impose such constraints at all. This paper first resolves this controversy by identifying the necessary condition when the constraints exist and demonstrating the condition is physically necessary. Furthermore, this paper reports that these three constraints are eliminated under all conditions, by using response EAM (R-EAM) potentials.

References

References
1.
Foiles
,
S. M.
, and
Baskes
,
M. I.
,
2012
, “
Contributions of the Embedded-Atom Method to Materials Science and Engineering
,”
MRS Bull.
,
37
, pp.
485
491
.10.1557/mrs.2012.93
2.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1983
, “
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
,
50
, pp.
1285
1288
.10.1103/PhysRevLett.50.1285
3.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
, pp.
6443
6453
.10.1103/PhysRevB.29.6443
4.
Helnwein
,
P.
,
2001
, “
Some Remarks on the Compressed Matrix Representation of Symmetric Second-Order and Fourth-Order Tensors
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
2753
2770
.10.1016/S0045-7825(00)00263-2
5.
Bolef
,
D. I.
, and
de Klerk
,
J.
,
1963
, “
Anomalies in the Elastic Constants and Thermal Expansion of Chromium Single Crystals
,”
Phys. Rev.
,
129
, pp.
1063
1067
.10.1103/PhysRev.129.1063
6.
Ledbetter
,
H.
, and
Kim
,
S.
,
2011
, “
Monocrystal Elastic Constants and Derived Properties of the Cubic and the Hexagonal Elements
,”
Handbook of Elastic Properties of Solids, Liquids, and Gases
,
Academic
,
San Diego
, CA, Vol.
2
, pp.
97
106
.
7.
McSkimin
,
H. J.
, and
Andreatch
,
J. P.
,
1963
, “
Elastic Moduli of Germanium Versus Hydrostatic Pressure at 25.0 °C and −195.8 °C
,”
J. Appl. Phys.
,
34
, pp.
651
655
.10.1063/1.1729323
8.
Pasianot
,
R.
, and
Savino
,
E. J.
,
1992
, “
Embedded-Atom-Method Interatomic Potentials for HCP Metals
,”
Phys. Rev. B
,
45
, pp.
12704
12710
.10.1103/PhysRevB.45.12704
9.
Rowlands
,
W. D.
, and
White
,
J. S.
,
1972
, “
The Determination of the Elastic Constants of Beryllium in the Temperature Range 25 to 300 °C
,”
J. Phys. F: Met. Phys.
,
2
, pp.
231
236
.10.1088/0305-4608/2/2/011
10.
Smith
,
J. F.
, and
Gjevre
,
J. A.
,
1960
, “
Elastic Constants of Yttrium Single Crystals in the Temperature Range 4.2–400 K
,”
J. Appl. Phys.
,
31
, pp.
645
647
.10.1063/1.1735657
11.
Simmons
,
G.
, and
Wang
,
H.
,
1971
,
Single Crystal Elastic Constants and Calculated Aggregated Properties
,
MIT Press
,
Cambridge, MA
.
12.
Igarashi
,
M.
,
Khantha
,
M.
, and
Vitek
,
V.
,
1991
, “
N-Body Interatomic Potentials for Hexagonal Close-Packed Metals
,”
Philos. Mag. B
,
63
, pp.
603
627
.10.1080/13642819108225975
13.
Zhou
,
L. G.
, and
Huang
,
H. C.
,
2012
, e-print arXiv:1209.4568.
You do not currently have access to this content.