Finite element analysis techniques were used to study the release step in a nanofabrication process. These calculations employed a novel adhesion/atomistic friction surface interaction model to define how the glassy polymer interacts with the hard mold. This model is applicable to solids that interact via relatively weak, van der Waals forces and is applicable to intentionally weakened interfaces (e.g., when a mold release is used). The goal of this effort is to simulate the entire separation process. The release step was studied by performing unit cell calculations for a pattern composed of identical, parallel channels. The interface between the mold and the glassy polymer did not unzip in a continuous, quasi-static manner in these simulations. Instead, there was a complex failure sequence that included multiple dynamic separations and arrest events as well as adhesive reattachment. The sensitivity of the release process to interface and bulk material properties, polymer shrinkage, and feature geometry was then quantified by examining variations from a baseline configuration. Finally, the feasibility of a hierarchical analysis that represents the nanometer-scale pattern by a pattern traction–separation (T–U) relationship, which is defined by a unit cell analysis, was demonstrated.

References

References
1.
Gates
,
B. D.
,
Xu
,
Q. B.
,
Stewart
,
M.
,
Ryan
,
D.
,
Willson
,
C. G.
, and
Whitesides
,
G. M.
,
2005
, “
New Approaches to Nanofabrication: Molding, Printing, and Other Techniques
,”
Chem. Rev.
,
105
(
4
), pp.
1171
1196
.10.1021/cr030076o
2.
Kendall
,
K.
,
1994
, “
Adhesion-Molecules and Mechanics
,”
Science
,
263
(
5154
), pp.
1720
1725
.10.1126/science.263.5154.1720
3.
Guo
,
L. J.
,
2007
, “
Nanoimprint Lithography: Methods and Material Requirements
,”
Adv. Mater.
,
19
(
4
), pp.
495
513
.10.1002/adma.200600882
4.
Chou
,
S. Y.
,
Krauss
,
P. R.
, and
Renstrom
,
P. J.
,
1996
, “
Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
,
14
(
6
), pp.
4129
4133
.10.1116/1.588605
5.
Costner
,
E. A.
,
Lin
,
M. W.
,
Jen
,
W. L.
, and
Willson
,
C. G.
,
2009
, “
Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication
,”
Annu. Rev. Mater. Res.
,
39
, pp.
155
180
.10.1146/annurev-matsci-082908-145336
6.
Kang
,
J. H.
,
Kim
,
K. S.
, and
Kim
,
K. W.
,
2010
, “
Molecular Dynamics Study on the Effects of Stamp Shape, Adhesive Energy, and Temperature on the Nanoimprint Lithography Process
,”
Appl. Surf. Sci.
,
257
(
5
), pp.
1562
1572
.10.1016/j.apsusc.2010.08.096
7.
Chandross
,
M.
, and
Grest
,
G. S.
,
2012
, “
Molecular Scale Modeling of Polymer Imprint Nanolithography
,”
Langmuir
,
28
(
1
), pp.
1049
1055
.10.1021/la203661d
8.
Landis
,
S.
,
Chaix
,
N.
,
Gourgon
,
C.
, and
Leveder
,
T.
,
2008
, “
Quantitative Characterizations of a Nanopatterned Bonded Wafer: Force Determination for Nanoimprint Lithography Stamp Removal
,”
Nanotechnology
,
19
(
12
),
125305
.10.1088/0957-4484/19/12/125305
9.
Hirai
,
Y.
,
Yoshida
,
S.
, and
Takagi
,
N.
,
2003
, “
Defect Analysis in Thermal Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
,
21
(
6
), pp.
2765
2770
.10.1116/1.1629289
10.
Song
,
Z. C.
,
You
,
B. H.
,
Lee
,
J.
, and
Park
,
S.
,
2008
, “
Study on Demolding Temperature in Thermal Imprint Lithography Via Finite Element Analysis
,”
Microsyst. Technol.
,
14
(
9–11
), pp.
1593
1597
.10.1007/s00542-008-0563-x
11.
Stoyanov
,
S.
,
Tilford
,
T.
,
Amalou
,
F.
,
Cargill
,
S.
,
Bailey
,
C.
, and
Desmulliez
,
M.
,
2011
, “
Modelling and Optimisation Study on the Fabrication of Nano-Structures Using Imprint Forming Process
,”
Eng. Comput.
,
28
(
1–2
), pp.
93
111
.10.1108/02644401111097046
12.
Schunk
,
P. R.
,
Roberts
,
S. A.
,
Chandross
,
M. E.
,
Grest
,
G. S.
,
Fan
,
H.
,
Reedy
,
E. D.
, Jr.
,
Cox
,
J. V.
,
Tjiptowidjojo
,
K.
, and
Cheng
,
S.
,
2011
, “
Nanomanufacturing: Nano-Structured Materials Made Layer-by-Layer
,” Technical Report No. SAND2011-8080, Sandia National Laboratories, Albuquerque, NM.
13.
Reedy
,
E. D.
, Jr.
,
2013
, “
Adhesion/Atomistic Friction Surface Interaction Model With Application to Interfacial Fracture and Nano-Fabrication
,” Int. J. Solids Struct. (in press).
14.
Kent
,
M. S.
,
Yim
,
H.
,
Matheson
,
A.
,
Cogdill
,
C.
,
Nelson
,
G.
, and
Reedy
,
E. D.
, Jr
.,
2001
, “
Use of Self-Assembled Monolayers at Variable Coverage to Control Interface Bonding in a Model Study of Interfacial Fracture: Pure Shear Loading
,”
J. Adhes.
,
75
(
3
), pp.
267
298
.10.1080/00218460108029605
15.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
16.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
17.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.10.1016/0022-5096(92)90020-3
18.
Clough
,
R. W.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
19.
Reedy
,
E. D.
, Jr.
,
Mello
,
F. J.
, and
Guess
,
T. R.
,
1997
, “
Modeling the Initiation and Growth of Delaminations in Composite Structures
,”
J. Compos. Mater.
,
31
(
8
), pp.
812
831
.10.1177/002199839703100804
You do not currently have access to this content.