Hydroxyapatite (HA) has been proposed as a candidate material for bone implants because of its similarity to the inorganic phase in bone. However, due to its lower mechanical properties compared to bone, it has not been used in load bearing bone implants. Inclusion of second phase reinforcements in HA such as carbon nanotubes (CNT) and graphene nanosheets is expected to significantly improve its mechanical properties. In this study, a computational framework that will improve the understanding of the mechanical behavior of graphene nanosheet and CNT-reinforced HA-nanocomposites is proposed. The variation of elastic modulus of HA-nanocomposites is assessed based on the nanofiller type, volume fraction, alignment, area, thickness, and aspect ratio using the finite element modeling. The results of the simulations show that graphene nanosheets are more effective in improving the elastic modulus of nanocomposites than CNTs at similar volume fractions. HA-nanocomposites reinforced by graphene nanosheets exhibit transversely isotropic material properties and provide the highest elastic modulus when aligned along a direction or randomly distributed in a plane, whereas CNTs provide the best reinforcement when aligned along an axis. Variation in graphene nanosheet area, thickness, aspect ratio, and carbon nanotube length have negligible effect on elastic modulus of the HA-nanocomposite. In addition, comparison between the finite element simulations and theoretical calculations show that clustering of nanoinclusions reduces the effectiveness of the reinforcement they provide. The simulation results and the computational framework presented in this study are expected to help in determining the best design and manufacturing parameters that can be adapted for developing HA-nanocomposite bone implant materials.

References

References
1.
De With
,
G.
,
Vandijk
,
H. J. A.
,
Hattu
,
N.
, and
Prijs
,
K.
,
1981
, “
Preparation, Microstructure and Mechanical Properties of Polycrystalline Hydroxyapatite
,”
J. Mater. Sci.
,
16
, pp.
1592
1598
.10.1007/BF02396876
2.
Hench
,
L. L.
,
1991
, “
Bioceramics: From Concept to Clinic
,”
J. Am. Ceram. Soc.
,
74
(
7
), pp.
1487
1510
.10.1111/j.1151-2916.1991.tb07132.x
3.
White
,
A. A.
,
Best
,
S. M.
, and
Kinloch
,
I. A.
,
2007
, “
Hydroxyapatite-Carbon Nanotube Composites for Biomedical Applications: A Review
,”
Int. J. Appl. Ceram. Technol.
,
4
(
1
), pp.
1
13
.10.1111/j.1744-7402.2007.02113.x
4.
Asmus
,
S. M.
,
Sakakura
,
S.
, and
Pezzotti
G.
,
2003
, “
Hydroxyapatite Toughened by Silver Inclusions
,”
J. Compos. Mater.
,
37
(
23
), pp.
2117
2129
.10.1177/002199803036242
5.
Chen
,
Y.
,
Zhang
,
Y. Q.
,
Zhang
,
T. H.
,
Gan
,
C. H.
,
Zheng
,
C. Y.
, and
Yu
,
G.
,
2006
, “
Carbon Nanotube Reinforced Hydroxyapatite Composite Coatings Produced Through Laser Surface Alloying
,”
Carbon
,
44
, pp.
37
45
.10.1016/j.carbon.2005.07.011
6.
Guo
,
H.
,
Khor
,
K. A.
,
Boey
,
Y. C.
, and
Miao
,
X.
,
2003
, “
Laminated and Functionally Graded Hydroxyapatite/Yttria Stabilized Tetragonal Zirconia Composites Fabricated by Spark Plasma Sintering
,”
Biomaterials
,
24
(
4
), pp.
667
675
.10.1016/S0142-9612(02)00381-2
7.
Kobayashi
,
S.
, and
Kawai
,
W.
,
2007
, “
Development of Carbon Nanofiber Reinforced Hydroxyapatite With Enhanced Mechanical Properties
,”
Composites: Part A
,
38
, pp.
114
123
.10.1016/j.compositesa.2006.01.006
8.
Lahiri
,
D.
,
Singh
,
V.
,
Keshri
,
A.
,
Seal
,
S.
, and
Agarwal
,
A.
,
2010
, “
Carbon Nanotube Toughened Hydroxyapatite by Spark Plasma Sintering: Microstructural Evolution and Multi-Scale Tribological Properties
,”
Carbon
,
48
(
11
), pp.
3103
3120
.10.1016/j.carbon.2010.04.047
9.
Li
,
H.
,
Zhao
,
N.
,
Liu
,
Y.
,
Liang
,
C.
,
Shi
,
C.
,
Du
,
X.
, and
Li
J.
,
2008
, “
Fabrication and Properties of Carbon Nanotubes Reinforced Fe/Hydroxyapatite Composites by In Situ Chemical Vapor Deposition
,”
Composites
, Part A,
39
, pp.
1128
1132
.10.1016/j.compositesa.2008.04.007
10.
Meng
,
Y. H.
,
Tang
,
C. Y.
,
Tsui
,
C. P.
, and
Chen da
,
Z.
,
2008
, “
Fabrication and Characterization of Needle-Like Nano-HA and HA/MWNT Composites
,”
J. Mater. Sci.: Mater. Med.
,
19
(
1
), pp.
75
81
.10.1007/s10856-007-3107-5
11.
Pezzotti
,
G.
,
Asmus
,
S. M.
,
Ferroni
,
L. P.
, and
Miki
,
S.
,
2002
, “
In Situ Polymerization Into Porous Ceramics: A Novel Route to Tough Biomimetic Materials
,”
J. Mater. Sci.: Mater. Med.
,
13
(
8
), pp.
783
787
.10.1023/A:1016127209117
12.
Pezzotti
,
G.
, and
Sakakura
,
S.
,
2003
, “
Study of the Toughening Mechanisms in Bone and Biomimetic Hydroxyapatite Materials Using Raman Microprobe Spectroscopy
,”
J. Biomed. Mater. Res. Part A
,
65
(
2
), pp.
229
236
.10.1002/jbm.a.10447
13.
Zhao
,
L.
, and
Gao
,
L.
,
2004
, “
Novel in Site Synthesis of MWNTS-Hyadoxyapatite Composites
,”
Carbon
,
42
, pp.
423
460
.10.1016/j.carbon.2003.10.024
14.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera-Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
,
I. A.
,
Prud'homme
,
R. K.
, and
Brinson
,
L. C.
,
2008
, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat. Nanotechnol.
,
3
(
6
), pp.
327
331
.10.1038/nnano.2008.96
15.
Rafiee
,
M.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.10.1002/smll.200901480
16.
Rafiee
,
M.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
.10.1021/nn9010472
17.
Cannillo
,
V.
,
Bondioli
,
F.
,
Lusvarghi
,
L.
,
Montorsi
,
M.
,
Avella
,
M.
,
Errico
,
M.
, and
Malinconico
,
M.
,
2006
, “
Modeling of Ceramic Particles Filled Polymer-Matrix Nanocomposites
,”
Compos. Sci. Technol.
,
66
(
7–8
), pp.
1030
1037
.10.1016/j.compscitech.2005.07.030
18.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2002
, “
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
,
80
(
24
), pp.
4647
4649
.10.1063/1.1487900
19.
Hbaieb
,
K.
,
Wang
,
Q.
,
Chia
,
Y.
, and
Cotterell
,
B.
,
2007
, “
Modelling Stiffness of Polymer/Clay Nanocomposites
,”
Polymer
,
48
(
3
), pp.
901
909
.10.1016/j.polymer.2006.11.062
20.
Hernández-Pérez
,
A.
, and
Avilés
,
F.
,
2009
, “
Modeling the Influence of Interphase on the Elastic Properties of Carbon Nanotube Composites
,”
Comput. Mater. Sci.
,
47
(
4
), pp.
926
933
.10.1016/j.commatsci.2009.11.025
21.
Li
,
C.
, and
Chou
,
T.-W.
,
2003
, “
Multiscale Modeling of Carbon Nanotube Reinforced Polymers
,”
J. Nanosci. Nanotechnol.
,
3
(
5
), pp.
423
430
.10.1166/jnn.2003.233
22.
Liu
,
Y. J.
, and
Chen
,
X. L.
,
2003
, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume
,”
Mech. Mater.
,
35
, pp.
69
81
.10.1016/S0167-6636(02)00200-4
23.
Luo
,
D.
,
Wang
,
W.
, and
Takao
,
Y.
,
2007
, “
Effects of the Distribution and Geometry of Carbon Nanotubes on the Macroscopic Stiffness and Microscopic Stresses of Nanocomposites
,”
Compos. Sci. Technol.
,
67
(
14
), pp.
2947
2958
.10.1016/j.compscitech.2007.05.005
24.
Wang
,
H.
,
Zhou
,
H.
,
Peng
,
R.
, and
Mishnaevsky
,
L.
,
2011
, “
Nanoreinforced Polymer Composites: 3D FEM Modeling With Effective Interface Concept
,”
Compos. Sci. Technol.
,
71
(
7
), pp.
980
988
.10.1016/j.compscitech.2011.03.003
25.
Fertig
,
R. S.
, and
Garnich
,
M. R.
,
2004
, “
Influence of Constituent Properties and Microstructural Parameters on the Tensile Modulus of a Polymer/Clay Nanocomposite
,”
Compos. Sci. Technol.
,
64
(
16
), pp.
2577
2588
.10.1016/j.compscitech.2004.06.002
26.
Sheng
,
N.
,
Boyce
,
M. C.
,
Parks
,
D. M.
,
Rutledge
,
G. C.
,
Abes
,
J. I.
, and
Cohen
,
R. E.
,
2004
, “
Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle
,”
Polymer
,
45
(
2
), pp.
487
506
.10.1016/j.polymer.2003.10.100
27.
Termonia
,
Y.
,
2007
, “
Structure-Property Relationships in Nanocomposites
,”
Polymer
,
48
(
23
), pp.
6948
6954
.10.1016/j.polymer.2007.09.025
28.
Ji
,
X.
,
Cao
,
Y.
, and
Feng
,
X.
,
2010
, “
Micromechanics Prediction of the Effective Elastic Moduli of Graphene Sheet-Reinforced Polymer Nanocomposites
,”
Model. Simul. Mater. Sci. Eng.
,
18
, p.
045005
.10.1088/0965-0393/18/4/045005
29.
Liu
,
H.
, and
Brinson
,
L.
,
2008
, “
Reinforcing Efficiency of Nanoparticles: A Simple Comparison for Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
68
(
6
), pp.
1502
1512
.10.1016/j.compscitech.2007.10.033
30.
Shi
,
D. L.
,
Feng
,
X. Q.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2004
, “
The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites
,”
J. Eng. Mater. Technol.
,
126
(
3
), pp.
250
257
.10.1115/1.1751182
31.
Wang
,
J.
, and
Pyrz
,
R.
,
2004
, “
Prediction of the Overall Moduli of Layered Silicate-Reinforced Nanocomposites—Part I: Basic Theory and Formulas
,”
Compos. Sci. Technol.
,
64
(
7–8
), pp.
925
934
.10.1016/S0266-3538(03)00024-1
32.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
You do not currently have access to this content.