A weak form Galerkin finite element model for the nonlinear quasi-static and fully transient analysis of initially straight viscoelastic beams is developed using the kinematic assumptions of the third-order Reddy beam theory. The formulation assumes linear viscoelastic material properties and is applicable to problems involving small strains and moderate rotations. The viscoelastic constitutive equations are efficiently discretized using the trapezoidal rule in conjunction with a two-point recurrence formula. Locking is avoided through the use of standard low-order reduced integration elements as well through the employment of a family of elements constructed using high-polynomial order Lagrange and Hermite interpolation functions.

References

References
1.
Flügge
,
W.
,
1975
,
Viscoelasticity
,
2nd ed.
,
Springer
,
Berlin/Heidelberg
.
2.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity
,
2nd ed.
,
Academic Press
,
New York
.
3.
Findley
,
W. N.
,
Lai
,
J. S.
, and
Onaran
,
K.
,
1976
,
Creep and Relaxation of Nonlinear Viscoelastic Materials
,
North-Holland Pub. Co.
,
New York
.
4.
Reddy
,
J. N.
,
2008
,
An Introduction to Continuum Mechanics With Applications
,
Cambridge University Press
,
New York
.
5.
Chen
,
T.-M.
,
1995
, “
The Hybrid Laplace Transform/Finite Element Method Applied to the Quasi–Static and Dynamic Analysis of Viscoelastic Timoshenko Beams
,”
Int. J. Numer. Methods Eng.
,
38
(
3
), pp.
509
522
.10.1002/nme.1620380310
6.
Aköz
,
Y.
, and
Kadioğlu
,
F.
,
1999
, “
The Mixed Finite Element Method for the Quasi-Static and Dynamic Analysis of Viscoelastic Timoshenko Beams
,”
Int. J. Numer. Methods Eng.
,
44
(
12
), pp.
1909
1932
.10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P
7.
Temel
,
B.
,
Calim
,
F. F.
, and
Tütüncü
,
N.
,
2004
, “
Quasi-Static and Dynamic Response of Viscoelastic Helical Rods
,”
J. Sound Vib.
,
271
(
3–5
), pp.
921
935
.10.1016/S0022-460X(03)00760-0
8.
Chen
,
Q.
, and
Chan
,
Y. W.
,
2000
, “
Integral Finite Element Method for Dynamical Analysis of Elastic-Viscoelastic Composite Structures
,”
Comput. Struct.
,
74
(
1
), pp.
51
64
.10.1016/S0045-7949(98)00321-6
9.
Trindade
,
M. A.
,
Benjeddou
,
A.
, and
Ohayon
,
R.
,
2001
, “
Finite Element Modelling of Hybrid Active-Passive Vibration Damping of Multilayer Piezoelectric Sandwich Beams—Part I: Formulation
,”
Int. J. Numer. Methods Eng.
,
51
(
7
), pp.
835
854
.10.1002/nme.189.abs
10.
Pálfalvi
,
A.
,
2008
, “
A Comparison of Finite Element Formulations for Dynamics of Viscoelastic Beams
,”
Finite Elem. Anal. Design
,
44
(
14
), pp.
814
818
.10.1016/j.finel.2008.06.009
11.
McTavish
,
D. J.
, and
Hughes
,
P. C.
,
1992
, “
Finite Element Modeling of Linear Viscoelastic Structures—The GHM Method
,”
Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Dallas, TX, April 13–15, AIAA Paper No. 92-2380
, pp.
1753
1763
.
12.
McTavish
,
D. J.
, and
Hughes
,
P. C.
,
1993
, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
103
110
.10.1115/1.2930302
13.
Balamurugan
,
V.
, and
Narayanan
,
S.
,
2002
, “
Finite Element Formulation and Active Vibration Control Study on Beams Using Smart Constrained Layer Damping (SCLD) Treatment
,”
J. Sound Vib.
,
249
(
2
), pp.
227
250
.10.1006/jsvi.2001.3804
14.
Balamurugan
,
V.
, and
Narayanan
,
S.
,
2002
, “
Active-Passive Hybrid Damping in Beams With Enhanced Smart Constrained Layer Treatment
,”
Eng. Struct.
,
24
(
3
), pp.
355
363
.10.1016/S0141-0296(01)00101-8
15.
Johnson
,
A. R.
,
Tessler
,
A.
, and
Dambach
,
M.
,
1997
, “
Dynamics of Thick Viscoelastic Beams
,”
J. Eng. Mater. Technol.
,
119
(
3
), pp.
273
278
.10.1115/1.2812256
16.
Austin
,
E. M.
, and
Inman
,
D. J.
,
1998
, “
Modeling of Sandwich Structures
,”
Smart Structures and Materials 1998: Passive Damping and Isolation
, Vol.
3327
, No.
1
, pp.
316
327
.
17.
Kennedy
,
T. C.
,
1998
, “
Nonlinear Viscoelastic Analysis of Composite Plates and Shells
,”
Compos. Struct.
,
41
(
3–4
), pp.
265
272
.10.1016/S0263-8223(98)00025-7
18.
Oliveira
,
B. F.
, and
Creus
,
G. J.
,
2000
, “
Viscoelastic Failure Analysis of Composite Plates and Shells
,”
Compos. Struct.
,
49
(
4
), pp.
369
384
.10.1016/S0263-8223(00)00069-6
19.
Hammerand
,
D. C.
, and
Kapania
,
R. K.
,
2000
, “
Geometrically Nonlinear Shell Element for Hygrothermorheologically Simple Linear Viscoelastic Composites
,”
AIAA J.
,
38
, pp.
2305
2319
.10.2514/2.900
20.
Payette
,
G. S.
, and
Reddy
,
J. N.
,
2010
, “
Nonlinear Quasi-Static Finite Element Formulations for Viscoelastic Euler–Bernoulli and Timoshenko Beams
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
12
), pp.
1736
1755
.10.1002/cnm.1262
21.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
, pp.
745
752
.10.1115/1.3167719
22.
Heyliger
,
P. R.
, and
Reddy
,
J. N.
,
1988
, “
A Higher-Order Beam Finite Element for Bending and Vibration Problems
,”
J. Sound Vib.
,
126
(
2
), pp.
309
326
.10.1016/0022-460X(88)90244-1
23.
Wang
,
C. M.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
,
2000
,
Shear Deformable Beams and Plates. Relationships With Classical Solutions
,
Elsevier
,
Amesterdam
.
24.
Reddy
,
J. N.
,
2004
,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
,
Oxford, UK.
25.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley and Sons, Ltd
,
New York
.
26.
Reddy
,
J. N.
,
1999
,
Theory and Analysis of Elastic Plates
,
Taylor and Francis
,
Philadelphia
.
27.
Başar
,
Y.
,
Ding
,
Y.
, and
Schultz
,
R.
,
1993
, “
Refined Shear-Deformation Models for Composite Laminates With Finite Rotations
,”
Int. J. Solids Struct.
,
30
(
19
), pp.
2611
2638
.10.1016/0020-7683(93)90102-D
28.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2007
, “
Finite Element Formulations for Transient Dynamic Analysis in Structural Systems With Viscoelastic Treatments Containing Fractional Derivative Models
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2173
2195
.10.1002/nme.1840
29.
Enelund
,
M.
, and
Josefson
,
B. L.
,
1997
, “
Time-Domain Finite Element Analysis of Viscoelastic Structures With Fractional Derivatives Constitutive Relations
,”
AIAA J.
,
35
(
10
), pp.
1630
1637
.10.2514/2.2
30.
Escobedo-Torres
,
J.
, and
Ricles
,
J. M.
,
1998
, “
The Fractional Order Elastic-Viscoelastic Equations of Motion: Formulation and Solution Methods
,”
J. Intell. Mater. Syst. Struct.
,
9
(
7
), pp.
489
502
.10.1177/1045389X9800900701
31.
Galucio
,
A. C.
,
Deü
,
J.-F.
, and
Ohayon
,
R.
,
2004
, “
Finite Element Formulation of Viscoelastic Sandwich Beams Using Fractional Derivative Operators
,”
Comput. Mech.
,
33
, pp.
282
291
.10.1007/s00466-003-0529-x
32.
Zheng-you
,
Z.
,
Gen-guo
,
L.
, and
Chang-jun
,
C.
,
2002
, “
Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation
,”
Appl. Math. Mech.
,
23
, pp.
1
12
.10.1007/BF02437724
33.
Taylor
,
R. L.
,
Pister
,
K. S.
, and
Goudreau
,
G. L.
,
1970
, “
Thermomechanical Analysis of Viscoelastic Solids
,”
Int. J. Numer. Methods Eng.
,
2
(
1
), pp.
45
59
.10.1002/nme.1620020106
34.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer-Verlag
,
Berlin
.
35.
Reddy
,
J. N.
,
1997
, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
149
(
1–4
), pp.
113
132
.10.1016/S0045-7825(97)00075-3
36.
Reddy
,
J. N.
,
2002
,
Energy Principles and Variational Methods in Applied Mechanics
,
2nd ed.
,
John Wiley and Sons, Ltd
,
New York
.
37.
Hamming
,
R.
,
1987
,
Numerical Methods for Scientists and Engineers
,
2nd ed.
,
Dover Publications
,
Mineola, NY
.
38.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
1999
,
Spectral/hp Element Methods for CFD
,
Oxford University Press
,
Oxford, UK
.
39.
Lai
,
J.
, and
Bakker
,
A.
,
1996
, “
3-D Schapery Representation for Non-Linear Viscoelasticity and Finite Element Implementation
,”
Comput. Mech.
,
18
, pp.
182
191
.10.1007/BF00369936
40.
Van Krevelen
,
D. W.
,
1990
,
Properties of Polymers
,
3rd ed.
,
Elsevier
,
Amsterdam
.
41.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech.
,
85
, pp.
67
94
.
42.
Reddy
,
J. N.
,
2006
,
An Introduction to the Finite Element Method
,
3rd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.