This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling the fracture of materials with negligible plasticity outside the fracture process zone. These issues include: (1) why cohesive laws of different shapes can produce similar fracture predictions, (2) under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results, (3) when the shape of cohesive laws becomes important in the fracture predictions, and (4) why the opening profile along the cohesive zone length (CZL) needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model uses five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) defined by the area under the traction–separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. The following conclusions from this study may provide some guidelines for the prediction of fracture using CZM. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small-scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of the cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile for determining the critical remote applied load.

References

References
1.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Advances in Applied Mechanics
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
2.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.10.1016/0022-5096(60)90013-2
3.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
, pp.
2899
2938
.10.1016/0020-7683(95)00255-3
4.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.10.1115/1.3173064
5.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
, pp.
21
40
.10.1007/BF00018611
6.
Xu
,
X. P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Modell. Simul. Mater. Sci. Eng.
,
1
, pp.
111
132
.10.1088/0965-0393/1/2/001
7.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Rbetween Crack Growth Resistance and Fracture Process Parameters in Elastic–Plastic Solids
,”
J. Mech. Phys. Solids
,
40
, pp.
1377
1397
.10.1016/0022-5096(92)90020-3
8.
Tvergaard
,
V.
,
1990
, “
Effect of Fibre Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng. A
,
125
, pp.
203
213
.10.1016/0921-5093(90)90170-8
9.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2009
, “
A Unified Potential-Based Cohesive Model for Mixed-Mode Fracture
J. Mech. Phys. Solids
,
57
(
6
), pp.
891
908
.10.1016/j.jmps.2008.10.003
10.
Rice
,
J. R.
,
1978
, “
Thermodynamics of the Quasi-Static Growth of Griffith Cracks
,”
J. Mech. Phys. Solids
,
26
, pp.
61
78
.10.1016/0022-5096(78)90014-5
11.
Gurtin
,
M. E.
,
1979
, “
Thermodynamics and Cohesive Zone in Fracture
,”
J. Appl. Math. Phys. (ZAMP)
,
30
, pp.
991
1003
.10.1007/BF01590496
12.
Gurtin
,
M. E.
,
1979
, “
Thermodynamics and the Griffith Criterion for Brittle Fracture
,”
Int. J. Solids Struct.
,
15
, pp.
553
560
.10.1016/0020-7683(79)90082-9
13.
Costanzo
,
F.
, and
Allen
,
D. H.
,
1995
, “
A Continuum Thermodynamic Analysis of Cohesive Zone Models
,”
Int. J. Eng. Sci.
,
33
, pp.
2197
2219
.10.1016/0020-7225(95)00066-7
14.
Li
,
Y. N.
, and
Liang
R. Y.
,
1993
, “
The Theory of the Boundary Eigenvalue Problem in the Cohesive Crack Model and Its Application
,”
J. Mech. Phys. Solids
,
41
, pp.
331
350
.10.1016/0022-5096(93)90011-4
15.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2008
, “
Determination of the Kink Point in the Bi-Linear Softening Model for Concrete
,”
Eng. Fract. Mech.
,
75
, pp.
3806
3818
.10.1016/j.engfracmech.2008.02.002
16.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.10.1115/1.3601206
17.
Hutchinson
,
J. W.
,
1979
,
A Course on Nonlinear Fracture Mechanics
,
Department of Solid Mechanics, The Technical University of Denmark
,
Lyngby, Denmark
, pp.
12
13
.
18.
Bao
,
G.
, and
Suo
,
Z.
,
1992
, “
Remarks on Crack-Bridging Concepts
,”
Appl. Mech. Rev.
,
45
(
8
), pp.
355
366
.10.1115/1.3119764
19.
Chandra
N.
,
Li.
H.
,
Shet
,
C.
, and
Ghonem
,
H.
,
2002
, “
Some Issues in the Application of Cohesive Zone Models for Metal Ceramic Interfaces
,”
Int. J. Solids Struct.
,
39
, pp.
2827
2855
.10.1016/S0020-7683(02)00149-X
20.
Shet
,
C.
, and
Chandra
,
N.
,
2004
, “
Effect of the Shape of Traction–Displacement Cohesive Zone Curves on the Fracture Response
,”
Mech. Adv. Mater. Struct.
,
11
, pp.
249
275
.10.1080/15376490490427207
21.
Li
,
H.
, and
Chandra
,
N.
,
2003
, “
Analysis of Crack Growth and Crack-Tip Plasticity in Ductile Materials Using Cohesive Zone Models
,”
Int. J. Plast.
,
19
, pp.
849
882
.10.1016/S0749-6419(02)00008-6
22.
Alfano
,
M.
,
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2009
, “
Mode I Fracture of Adhesive Joints Using Tailored Cohesive Zone Models
,”
Int. J. Fract.
,
157
, pp.
193
204
.10.1007/s10704-008-9293-4
23.
Rots
,
J. G.
,
1986
, “
Strain-Softening Analysis of Concrete Fracture Specimens
,”
Fracture Toughness and Fracture Energy of Concrete
,
F. H.
Wittmann
, ed.,
Elsevier Science Publishers
,
Amsterdam, The Netherlands
, pp.
137
148
.
24.
de Borst
,
R.
,
2003
, “
Numerical Aspects of Cohesive-Zone Models
,”
Eng. Fract. Mech.
,
70
, pp.
1743
1757
.10.1016/S0013-7944(03)00122-X
25.
van Mier
,
J. G. M.
, and
van Vliet
,
M. R. A.
,
2002
, “
Uniaxial Tension for the Determination of Fracture Parameters of Concrete: State of the Art
,”
Eng. Fract. Mech.
,
69
, pp.
235
247
.10.1016/S0013-7944(01)00087-X
26.
Abanto-Bueno
,
J.
, and
Lambros
,
J.
,
2005
, “
Experimental Determination of Cohesive Failure Properties of a Photodegradable Copolymer
,”
Exp. Mech.
,
45
, pp.
144
152
.10.1007/BF02428187
27.
Kandula
,
S. S. V.
,
Abanto-Bueno
,
J.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
,
2006
, “
Cohesive Modeling of Quasi-Static Fracture in Functionally Graded Materials
,”
J. Appl. Mech.
,
73
, pp.
783
791
.10.1115/1.2151210
28.
Elices
,
M.
,
Guinea
,
G. V.
,
Gomez
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
, pp.
137
163
.10.1016/S0013-7944(01)00083-2
29.
Li
,
V. C.
,
Chan
,
C. M.
, and
Leung
,
K. Y.
,
1987
, “
Experimental Determination of the Tension-Softening Relations for Cementitious Composites
,”
Cem. Concr. Res.
,
17
, pp.
441
452
.10.1016/0008-8846(87)90008-1
30.
Sørensen
,
B. F.
, and
Jacobsen
,
T. K.
,
2003
, “
Determination of Cohesive Laws by the J Integral Approach
,”
Eng. Fract. Mech.
,
70
, pp.
1841
1858
.10.1016/S0013-7944(03)00127-9
31.
Gain
,
A. L.
,
Carroll
,
J.
,
Paulino
,
G. H.
, and
Lambros
,
J.
,
2011
, “
A Hybrid Experimental/Numerical Technique to Extract Cohesive Fracture Properties for Mode-I Fracture of Quasi-Brittle Materials
,”
Int. J. Fract.
,
169
,
pp
. 113–131.10.1007/s10704-010-9578-2
32.
Shen
,
B.
, and
Paulino
,
G. H.
,
2011
, “
Identification of Cohesive Zone Model and Elastic Parameters of Fiber-Reinforced Cementitious Composites Using Digital Image Correlation and a Hybrid Inverse Technique
,”
Cem. Concr. Compos.
,
33
, pp.
572
585
.10.1016/j.cemconcomp.2011.01.005
33.
Jin
,
Z. H.
, and
Sun
,
C. T.
,
2005
, “
Cohesive Fracture Model Based on Necking
,”
Int. J. Fract.
,
134
, pp.
91
108
.10.1007/s10704-005-7864-1
34.
Jin
,
Z. H.
, and
Sun
,
C. T.
,
2006
, “
A Comparison of Cohesive Zone Modeling and Classical Fracture Mechanics Based on Near Tip Stress Field
,”
Int. J. Solids Struct.
,
43
, pp.
1047
1060
.10.1016/j.ijsolstr.2005.06.074
35.
matlab®
,
The Language of Technical Computing
, Version 7.11.0.584 (R2010b),
The MathWorks, Inc
.
36.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University Press
,
New York
.
37.
Cox
,
B. N.
, and
Marshall
,
D. B.
,
1994
, “
Concepts for Bridged Cracks in Fracture and Fatigue
,”
Acta Metall. Mater.
,
42
(
2
), pp.
341
363
.10.1016/0956-7151(94)90492-8
38.
Planas
,
J.
, and
Elices
,
M.
,
1992
, “
Asymptotic Analysis of Cohesive Crack: 1. Theoretical Background
,”
Int. J. Fract.
,
55
, pp.
153
177
.10.1007/BF00017275
39.
Broek
,
D.
,
1986
,
Elementary Engineering Fracture Mechanics
,
4th revised ed.
,
Martinus Nijhoff Publishers
,
Dordrecht, The Netherlands
, pp.
247
248
.
40.
Davila
,
C. G.
,
Camanho
,
P. P.
, and
de Moura
,
M. F.
,
2001
, “
Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics & Materials Conference
,
Seattle, WA
, April 16–19, Paper No. AIAA-2001-1486.
41.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
,
37
, pp.
1415
1438
.10.1177/0021998303034505
42.
Yang
,
Q.
, and
Cox
,
B.
,
2005
, “
Cohesive Models for Damage Evolution in Laminated Composites
,”
Int. J. Fract.
,
133
, pp.
107
137
.10.1007/s10704-005-4729-6
43.
Xie
,
D.
, and
Waas
,
A. M.
,
2006
, “
Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Method
,”
Eng. Fract. Mech.
,
73
, pp.
1783
1796
.10.1016/j.engfracmech.2006.03.006
44.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
,
ASME Press
,
New York
, p.
141
.
45.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
, pp.
773
782
.10.1016/0008-8846(76)90007-7
46.
Moës
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
, pp.
813
833
.10.1016/S0013-7944(01)00128-X
47.
Turon
,
A.
,
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
, pp.
1665
1668
.10.1016/j.engfracmech.2006.08.025
48.
Geubelle
,
P. H.
, and
Baylor
,
J.
,
1998
, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Composites Part B
,
29
, pp.
589
602
.10.1016/S1359-8368(98)00013-4
49.
Jin
,
Z. H.
,
2009
,
The University of Maine, Orono
,
Mechanical Engineering Department
, personal communication, September 4.
50.
Planas
,
J.
, and
Elices
,
M.
,
1991
, “
Nonlinear Fracture of Cohesive Materials
,”
Int. J. Fract.
,
51
, pp.
139
157
. 10.1007/BF00033975
You do not currently have access to this content.