Recent experiments on metals have shown that all of the stress invariants should be involved in the constitutive description of the material in plasticity. In this paper, a plasticity model for metals is defined for isotropic materials, which is a function of the first stress invariant in addition to the second and the third invariants of the deviatoric stress tensor. For this purpose, the Drucker–Prager yield criterion is extended by addition of a new term containing the second and the third deviatoric stress invariants. Furthermore for estimating the cyclic behavior, new terms are incorporated into the Chaboche's hardening evolution equation. These modifications are applied by adding new terms that include the effect of pervious plastic history of deformation on the current hardening evaluation equation. Also modified is the isotropic hardening rule with incorporating the effect of the first stress invariant. For calibration and evaluation of this plasticity model, a series of experimental tests are conducted on high strength steel, DIN 1.6959. In addition, finite element simulations are carried out including integration of the constitutive equations using the modified return mapping algorithm. The modeling results are in good agreement with experiments.

References

References
1.
Tresca
,
H.
,
1864
, “
Memoir on the Flow of Solid Bodies Under Strong Pressure
,”
Comptes-rendus de l'académie des sciences
,
59
, p.
754
758
.
2.
von Mises
,
R.
,
1913
, “
Mechanik der festen Körpern im plastisch-deformablen Zustand. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen
,”
Mathematisch-Physikalische Klasse
, pp.
582
592
.
3.
Hencky
,
H.
,
1924
, “
Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen
,”
ZaMM
,
4
, pp.
323
335
.10.1002/zamm.19240040405
4.
Bardet
,
J.
,
1990
, “
Lode Dependences for Isotropic Pressure-Sensitive Elastoplastic Materials
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
498
506
.10.1115/1.2897051
5.
Menetrey
,
P.
, and
Willam
,
K. J.
,
1995
, “
Triaxial Failure Criterion for Concrete and Its Generalization
,”
ACI Struct. J.
,
92
(
3
), pp.
311
318
.
6.
Bigoni
,
D.
, and
Piccolroza
,
A.
,
2003
, “
A New Yield Function for Geomaterials
,”
Constitutive Modeling and Analysis of Boundary Value Problems in Geotechnical Engineering
,
C.
Viggiani
, ed.,
Hevelius, Benevento, Italy
, pp.
266
281
.
7.
Fossum
,
A.
, and
Brannon
,
R.
,
2006
, “
On a Viscoplastic Model for Rocks With Mechanism-Dependent Characteristic Times
,”
Acta Geotech.
,
1
, pp.
89
106
.10.1007/s11440-006-0010-z
8.
Spitzig
,
W. A.
,
Sober
,
R. J.
, and
Richmond
,
O.
,
1975
, “
Pressure Dependence of Yielding and Associated Volume Expansion in Tempered Martensite
,”
Acta Metall.
,
23
, pp.
885
893
.10.1016/0001-6160(75)90205-9
9.
Spitzig
,
W. A.
,
Sober
,
R. J.
, and
Richmond
,
O.
,
1976
, “
The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory
,”
Metall. Trans.
,
7A
, pp.
1703
1710
.10.1007/BF02817888
10.
Spitzig
,
W. A.
, and
Richmond
,
O.
,
1984
, “
The Effect of Pressure on the Flow Stress of Metals
,”
Acta Metall.
,
32
(
3
), pp.
457
463
.10.1016/0001-6160(84)90119-6
11.
Wilson
,
C. D.
,
2002
, “
A Critical Reexamination of Lassical Metal Plasticity
,”
ASME J. Appl. Mech.
,
69
(
1
), pp.
63
68
.10.1115/1.1412239
12.
Brunig
,
M.
,
1999
, “
Numerical Simulation of the Large Elastic–Plastic Deformation Behavior of Hydrostatic Stress-Sensitive Solids
,”
Int. J. Plast.
,
15
, pp.
1237
1264
.10.1016/S0749-6419(99)00042-X
13.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis of Limit Design
,”
Q. Appl. Math.
,
10
, pp.
157
165
.
14.
Brunig
,
M.
,
Berger
,
S.
, and
Obrecht
,
H.
,
2000
, “
Numerical Simulation of the Localization Behavior of Hydrostatic-Stress-Sensitive Metals
,”
Int. J. Mech. Sci.
,
42
, pp.
2147
2166
.10.1016/S0020-7403(00)00002-3
15.
Brunig
,
M.
,
Chyra
,
O.
,
Albrecht
,
D.
,
Driemeier
,
L.
, and
Alves
,
M.
,
2008
, “
A Ductile Damage Criterion at Various Stress Triaxialities
,”
Int. J. Plast.
,
24
, pp.
1731
1755
.10.1016/j.ijplas.2007.12.001
16.
Cazacu
,
O.
, and
Barlat
,
F.
,
2003
, “
Application of Representation Theory to Describe Yielding of Anisotropic Aluminum Alloys
,”
Int. J. Eng. Sci.
,
41
, pp.
1367
1385
.10.1016/S0020-7225(03)00037-5
17.
Cazacu
,
O.
, and
Barlat
,
F.
,
2004
, “
A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals
,”
Int. J. Plast.
,
20
(
11
), pp.
2027
2045
.10.1016/j.ijplas.2003.11.021
18.
Cazacu
,
O.
,
Plunkett
,
B.
, and
Barlat
,
F.
,
2006
, “
Orthotropic Yield Criterion for Hexagonal Closed Packed Metals
,”
Int. J. Plast.
,
22
(
7
), pp.
1171
1194
.10.1016/j.ijplas.2005.06.001
19.
Cazacu
,
O.
,
Ionescu
,
I. R.
, and
Yoon
,
J. W.
,
2010
, “
Orthotropic Strain Rate Potential for the Description of Anisotropy in Tension and Compression of Metals
,”
Int. J. Plast.
,
26
, pp.
887
904
.10.1016/j.ijplas.2009.11.005
20.
Racherla
,
V.
, and
Bassani
,
J.
,
2007
, “
Strain Burst Phenomena in the Necking of a Sheet That Deforms by Non-Associated Plastic Flow
,”
Modell. Simul. Mater. Sci. Eng.
,
15
, pp.
S297
S311
.10.1088/0965-0393/15/1/S23
21.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
, pp.
1071
1096
.10.1016/j.ijplas.2007.09.004
22.
Mirone
,
G.
, and
Corallo
,
D.
,
2010
, “
A Local Viewpoint for Evaluating the Influence of Stress Triaxiality and Lode Angle on Ductile Failure and Hardening
,”
Int. J. Plast.
,
26
, pp.
348
371
.10.1016/j.ijplas.2009.07.006
23.
Gao
,
X.
,
Zhang
,
T.
,
Hayden
,
M.
, and
Roe
,
C.
,
2009
, “
Effects of the Stress State on Plasticity and Ductile Failure of an Aluminum 5083 Alloy
,”
Int. J. Plast.
,
25
, pp.
2366
2382
.10.1016/j.ijplas.2009.03.006
24.
Gao
,
X.
,
Zhang
,
T.
,
Zhou
,
J.
,
Graham
,
S. M.
,
Hayden
,
M.
, and
Roe
,
C.
,
2011
, “
On Stress-State Dependent Plasticity Modeling: Significance of the Hydrostatic Stress, the Third Invariant of Stress Deviator and the Non-Associated Flow Rule
,”
Int. J. Plast.
,
27
, pp.
217
231
.10.1016/j.ijplas.2010.05.004
25.
Prager
,
W.
,
1956
, “
A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids
,”
ASME J. Appl. Mech.
,
23
, pp.
493
496
.
26.
Ziegler
,
H.
,
1959
, “
A Modification of Prager's Hardening Rule
,”
Q. Appl. Math.
,
7
, pp.
55
65
.
27.
Mroz
,
Z.
,
1967
, “
On the Description of Anisotropic Work Hardening
,”
J. Mech. Phys. Solids
,
15
, pp.
163
175
.10.1016/0022-5096(67)90030-0
28.
Mroz
,
Z.
,
1969
, “
An Attempt to Describe the Behavior of Metals Under Cyclic Loads Using a More General Work-Hardening Model
,”
Acta Mech.
,
7
, pp.
199
212
.10.1007/BF01176668
29.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Berkeley Laboratories, R&D Department
,
CA
, CEGB Report No RD/B/N/731.
30.
Chaboche
,
J. L.
,
Dang-Van
,
K.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Transactions of 5th International Conference on Structural Mechanics in Reactor Technology (SMiRT)
,
Berlin, August 13–17, Division L
, Paper No. L11/3.
31.
Chaboche
,
J.-L.
, and
Rousselier
,
G.
,
1983
, “
On the Plastic and Viscoplastic Constitutive Equations, Part I: Rules Developed With Internal Variable Concept. Part II: Application of Internal Variable Concepts to the 316 Stainless Steel
,”
ASME J. Pressure Vessel Technol.
,
105
, pp.
153
164
.10.1115/1.3264257
32.
Chaboche
,
J.-L.
,
1986
, “
Time Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
, pp.
149
188
.10.1016/0749-6419(86)90010-0
33.
Chaboche
,
J.-L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
, pp.
247
302
.10.1016/0749-6419(89)90015-6
34.
Chaboche
,
J.-L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects
,”
Int. J. Plast.
,
7
, pp.
661
678
.10.1016/0749-6419(91)90050-9
35.
Voyiadjis
,
G. Z.
, and
Basuroychowdhury
,
I. N.
,
1998
, “
A Plasticity Model for Multiaxial Cyclic Loading and Ratcheting
,”
Acta Mech.
,
126
, pp.
19
35
.10.1007/BF01172796
36.
Bari
,
S.
, and
Hassan
,
T.
,
2002
, “
An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
18
, pp.
873
894
.10.1016/S0749-6419(01)00012-2
37.
Yoshida
,
F.
,
Uemori
,
T.
, and
Fujiwara
,
K.
,
2002
, “
Elastic-Plastic Behavior of Steel Sheets Under In-Plane Cyclic Tension-Compression at Large Strain
,”
Int. J. Plast.
,
18
, pp.
633
659
.10.1016/S0749-6419(01)00049-3
38.
Chun
,
B. K.
,
Kim
,
H. Y.
, and
Lee
,
J. K.
,
2002
, “
Modeling the Bauschinger Effect for Sheet Metals, Part II: Applications
,”
Int. J. Plast.
,
18
, pp.
597
616
.10.1016/S0749-6419(01)00047-X
39.
Chun
,
B. K.
,
Kim
,
H. Y.
, and
Lee
,
J. K.
,
2002
, “
Modeling the Bauschinger Effect for Sheet Metals, Part I: Theory
,”
Int. J. Plast.
,
18
, pp.
597
616
.10.1016/S0749-6419(01)00047-X
40.
Jiang
,
Y.
, and
Kurath
,
P.
,
1996
, “
Characteristics of Armstrong-Frederick Type Plasticity Model
,”
Int. J. Plast.
,
12
, pp.
387
415
.10.1016/S0749-6419(96)00013-7
41.
Wang
,
H.
, and
Barkley
,
M. E.
,
1998
, “
Strain Space Formulation of the Armstrong-Fredrick Family of Plasticity Models
,”
ASME J. Eng. Mater. Technol.
,
120
(
3
), pp.
230
235
.10.1115/1.2812348
42.
Wang
,
H.
, and
Barkley
,
M. E.
,
1999
, “
A Strain Space Nonlinear Kinematic Hardening/Softening Plasticity Models
,”
Int. J. Plast.
,
15
, pp.
755
777
.10.1016/S0749-6419(99)00019-4
43.
Basuroychowdhury
,
I. N.
, and
Voyiadjis
,
G. Z.
,
1998
, “
A Multiaxial Cyclic Plasticity Model for Non-Proportional Loading Cases
,”
Int. J. Plast.
,
14
(
9
), pp.
855
870
.10.1016/S0749-6419(98)00033-3
44.
Geng
,
L.
, and
Wagoner
,
R. H.
,
2000
, “
Springback Analysis With a Modified Nonlinear Hardening Model
,”
SAE Technical
Paper No. 2000-01-0768.10.4271/2000-01-0768
45.
Yaguchi
,
M.
,
Yamamoto
,
M.
, and
Ogata
,
T.
,
2002
, “
A Viscoplastic Constitutive Model for Nickel-Base Superalloy, Part I: Kinematic Hardening Rule of Anisotropic Dynamic Recovery
,”
Int. J. Plast.
,
18
, pp.
1083
1109
.10.1016/S0749-6419(01)00029-8
46.
Voyiadjis
,
G. Z.
, and
Al-Rub
,
R. K. A.
,
2003
, “
Thermodynamic Based Model for the Evolution Equation of the Backstress in Cyclic Plasticity
,”
Int. J. Plast.
,
19
, pp.
2121
2147
.10.1016/S0749-6419(03)00062-7
47.
Chaboche
,
J.-L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
, pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
48.
Troiano
,
E.
,
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Mossey
,
C.
,
2003
, “
Experimental Data, Numerical Fit and Fatigue Life Calculations Relating to Bauschinger Effect in High Strength Armament Steels
,”
ASME J. Pressure Vessel Technol.
,
125
, pp.
330
334
.10.1115/1.1593072
49.
Troiano
,
E.
,
Parker
,
A. P.
, and
Underwood
,
J. H.
,
2004
, “
Mechanisms and Modeling Comparing HB7 and A723 High Strength Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
126
, pp.
473
477
.10.1115/1.1811108
50.
Farrahi
,
G. H.
,
Hosseinian
,
E.
, and
Assempour
,
A.
,
2009
, “
On the Material Modeling of the Autofrettaged Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol
,
131
, p.
051403
.10.1115/1.3148084
51.
Coulomb
,
C.-A.
,
1776
, “
Essai sur une application des régles des maximis & minimis a quelques problémes de statique, relatifs á l'architecture
,”
De l'Imprimerie Royale, Paris
.
52.
Mohr
,
O.
,
1914
,
Abhandlungen aus dem Gebiete der Technischen Mechanik
,
2nd ed.
,
Wilhelm Ernst & Sohn
,
Berlin
.
53.
Puskar
,
A.
,
1993
, “
A Correlation Among Elastic Modulus Defect, Plastic Strain and Fatigue Life of Metals
,”
Mater. Sci. Forum
,
119–121
, pp.
455
460
.10.4028/www.scientific.net/MSF.119-121.455
54.
Bauschinger
,
J.
,
1881
, “
Ueber die Veranderung der Elasticitatagrenze und dea Elasticitatamoduls verschiadener Metalle
,”
Zivilingenieur
,
27
, pp.
289
348
.
You do not currently have access to this content.