In this study, the effectiveness of analytical models which attempt to predict the density of unsintered powder metallurgy (PM) compacts as a function of consolidation pressure is investigated. These models do not incorporate the nonuniform densification of powder compacts and may insufficiently describe the pressure/densification process. Fabrication of uniform and nonuniform Zinc (Zn) tablets is conducted to assess the validity of the pressure/density model developed by Quadrini et al. (Quadrini and Squeo, 2008, “Density Measurement of Powder Metallurgy Compacts by Means of Small Indentation,” J. Manuf. Sci. Eng., 130(3), pp. 0345031–0345034). Different tablet properties were obtained by varying the compaction pressure and fabrication protocol. Density gradients within Zn tablets result in a spatial dependence of Vickers microhardness (HV) throughout the fabricated specimen. As a result, micro-indentation testing is used extensively in this study as a characterization tool to evaluate the degree of nonuniformity in fabricated Zn tablets. Scanning electron microscopy (SEM) is also employed to verify tablet density by visual examination of surface porosity as compaction pressure is varied and sintering is applied.

References

References
1.
Quadrini
,
F.
, and
Squeo
,
E.
,
2008
, “
Density Measurement of Powder Metallurgy Compacts by Means of Small Indentation
,”
J. Manuf. Sci. Eng.
,
130
(
3
), pp.
0345031
0345034
.10.1115/1.2927441
2.
Ludwig
,
R.
,
Apelian
,
D.
, and
Leuenberger
,
G.
,
2005
, “
An NDE Methodology to Predict Density in Green-State Powder Metallurgy Compacts
,”
J. Nondestruct. Eval.
,
24
(
3
), pp.
109
119
.10.1007/s10921-005-7660-x
3.
Dawson
,
A. L.
, and
Bussiere
,
J. F.
,
1998
, “
Ultrasonic Characterization of Iron Powder Metallurgy Compacts During and After Compaction
,”
Adv. Perform. Mater.
,
5
, pp.
97
115
.10.1023/A:1008690122209
4.
Fleck
,
N.
, and
Smith
,
R.
,
1981
, “
Effect of Density on Tensile Strength, Fracture Toughness, and Fatigue Crack Propagation Behavior of Sintered Steel
,”
Powder Metall.
,
24
(
3
), pp.
121
125
.
5.
Carnavas
,
P.
, and
Page
,
N.
,
1998
, “
Elastic Properties of Compacted Metal Powders
,”
J. Mater. Sci.
,
33
, pp.
4647
4655
.10.1023/A:1004445527430
6.
Kumar
,
P.
, and
Kumaran
,
S.
,
2010
, “
Comparison Study of Fly Ash Reinforced AA6061 Composites Using Press Sinter Extrusion and Press Extrusion
,”
Powder Metall.
,
53
, pp
163
168
.10.1179/003258908X339055
7.
Chapra
,
S.
, and
Canale
,
R.
,
1998
,
Numerical Methods for Engineers
,
3rd ed.
, pp.
438
443
,
WCB/McGraw-Hill
,
Boston
.
8.
Kandeil
,
A.
,
Malherbe
,
M. C.
,
Critchley
,
S.
, and
Dokainish
,
M.
,
1977
, “
The Use of Hardness in the Study of Compaction Behavior and Die Loading
,”
Powder Technol.
,
17
, pp.
253
257
.10.1016/0032-5910(77)80028-4
9.
Al-Qureshi
,
H. A.
,
Soares
,
M. R.
,
Hotza
,
D.
,
Alves
,
M. C.
, and
Klein
,
A. N.
,
2008
, “
Analyses of the Fundamental Parameters of Cold Die Compaction of Powder Metallurgy
,”
J. Mater. Process. Technol.
,
199
, pp.
417
424
.10.1016/j.jmatprotec.2007.08.030
10.
Kim
,
H.
,
Estrin
,
Y.
,
Gutmanas
,
E. Y.
, and
Rhee
,
C.
,
2001
, “
A Constitutive Model for Densification of Metal Compacts: The Case of Copper
,”
Mater. Sci. Eng.
,
A307
, pp.
67
73
.10.1016/S0921-50939(00)01959-6
11.
Martin
,
C. L.
,
Bouvard
,
D.
, and
Shima
,
S.
,
2003
, “
Study of Particle Rearrangement During Powder Compaction by the Discrete Element Method
,”
J. Mech. Phys. Solids
,
51
, pp.
667
693
.10.1016/S0022-5096(02)00101-1
12.
Kim
,
H. S.
,
Won
,
C. W.
, and
Chun
,
B. S.
,
1998
, “
Plastic Deformation of Porous Metal With an Initial Inhomogeneous Density Distribution
,”
J. Mater. Process. Technol.
,
74
, pp.
213
217
.10.1016/S0924-0136(97)00270-7
13.
Lee
,
D.
, and
Kim
,
H.
,
1992
, “
Plastic Yield Behavior of Porous Metals
,”
Powder Metall.
,
35
(
4
), pp.
275
279
.
14.
Yoon
,
S. C.
,
Kwak
,
E. J.
,
Kim
,
T.
,
Cheon
,
B. S.
, and
Kim
,
H. S.
,
2008
, “
Yield and Densification Behavior of Rapidly Solidified Magnesium Powders
,”
Mater. Trans.
,
49
(
5
), pp.
967
971
.10.2320/matertrans.MC200724
15.
Alves
,
M. M.
,
Martins
,
A. F.
, and
Rodrigues
,
M. C.
,
2006
, “
A New Yield Function for Porous Materials
,”
J. Mater. Process. Technol.
,
179
, pp.
36
43
.10.1016/j.jmatprotec.2006.03.091
16.
Narayanasamy
,
R.
,
Ponalagusamy
,
R.
, and
Subramanian
,
K. R.
,
2001
, “
Generalized Yield Criteria of Porous Sintered Powder Metallurgy Metals
,”
J. Mater. Process. Technol.
,
110
, pp.
182
185
.10.1016/S0924-0136(00)00884-0
17.
Ponalagusamy
,
R.
,
Narayanasamy
,
R.
, and
Subramanian
,
K. R.
,
2005
, “
Prediction of Limit Strains in Sheet Metals by Using New Generalized Yield Criteria
,”
Mater. Des.
,
28
, pp.
913
920
.10.1016/j.matdes.2005.10.004
18.
Narayan
,
S.
, and
Rajeshkannan
,
A.
,
2011
, “
Densification Behavior in Forming of Sintered Iron–0.35% Carbon Powder Metallurgy Preform During Cold Upsetting
,”
Mater. Des.
,
32
, pp.
1006
1013
.10.1016/j.matdes.2010.08.010
19.
Tszeng
,
C. T.
,
1998
, “
Considering Particle Morphology in a Constitutive Model for Metal Powders Compaction
,”
Metall. Mater. Trans. A
,
30
, pp.
1159
1162
.10.1007/s11661-999-0168-8
20.
Kalpakjian
,
S.
, and
Schmid
,
S.
,
2006
,
Manufacturing Engineering and Technology
,
5th ed.
,
Pearson–Prentice-Hall
,
Upper Saddle River, NJ
, pp.
483
512
.
You do not currently have access to this content.