An innovative manufacturing method, bladder assisted composite manufacturing (BACM), to fabricate geometrically complex, hollow parts made of polymeric composite materials is presented. Unlike the conventional bladder or diaphragm assisted curing processes, BACM uses an internally heated bladder to provide the consolidation pressure at the required cure temperature. The feasibility of this manufacturing method is demonstrated by fabricating laminated composite cylinders using multiple cure pressures and number of plies. The elastic moduli, failure strength, fiber volume fraction, and void contents of the cylinders were found to be comparable to the values obtained from flat laminates produced by hot plate molding of the same material. Compared to conventional bladder manufacturing methods, the BACM process reduced the energy required to cure the cylinders by almost 50% due to internal heating and insulated mold.

References

References
1.
Lehmann
,
U.
, and
Michaeli
,
W.
,
1998
, “
Cores Lead to an Automated Production of Hollow Composite Parts in Resin Transfer Moulding
,”
Composites, Part A
,
29A
, pp.
803
810
.10.1016/S1359-835X(98)00007-4
2.
Ghiasi
,
H.
,
Lessard
,
L.
,
Pasini
,
D.
, and
Thouin
,
M.
,
2010
, “
Optimum Structural and Manufacturing Design of a Braided Hollow Composite Part
,”
Appl. Compos. Mater.
,
17
(
2
), pp.
159
173
.10.1007/s10443-009-9106-6
3.
Salomi
,
A.
,
Greco
,
A.
,
Felline
,
F.
,
Manni
,
O.
, and
Maffezzoli
,
A.
,
2007
, “
A Preliminary Study on Bladder-Assisted Rotomolding of Thermoplastic Polymer Composites
,”
Adv. Polym. Technol.
,
26
(
1
), pp.
21
32
.10.1002/adv.20085
4.
Visconti
,
I. C.
, and
Langella
,
A.
,
1992
, “
Analytical Modelling of Pressure Bag Technology
,”
Compos. Manuf.
,
3
(
1
), pp.
3
6
.10.1016/0956-7143(92)90176-U
5.
Trimble
,
B. J.
,
1992
, “
Method of Making Composite Cycle Frame Components
,” U.S. Patent No. 5,158,733.
6.
Rebard
,
D.
,
2004
, “
Bladder Molding With Latex in the Recreational Industry Lessons Learned
,”
Proceeding of 49th International SAMPE Symposium and Exhibition
,
SAMPE, Long Beach, CA
, pp.
79
82
.
7.
McCarthy
,
R. F. J.
,
Haines
,
G. H.
, and
Newley
,
R. A.
,
1994
, “
Polymer Composite Applications to Aerospace Equipment
,”
Compos. Manuf.
,
5
(
2
), pp.
83
93
.10.1016/0956-7143(94)90059-0
8.
Bader
,
M. G.
,
2002
, “
Selection of Composite Materials and Manufacturing Routes for Cost-Effective Performance
,”
Composites, Part A
,
33
, pp.
913
934
.10.1016/S1359-835X(02)00044-1
9.
Hodgkin
,
H. H.
, and
Rabu
,
N.
,
2000
, “
A New Development in High-Speed Composite Fabrication for Aerospace, Automotive, and Marine Applications
,”
Proceedings of 45th International SAMPE Symposium and Exhibition
,
SAMPE, Long Beach, CA
, pp.
2274
2282
.
10.
Tomblin
,
J. S.
,
McKenna
,
J.
,
Ng
,
Y. C.
, and
Raju
,
K. S.
,
2001
, “
B-Basis Design Allowables for Epoxy-Based Prepreg Newport E-Glass Fabric 7781/NB-321
,” AGATE-WP3.3-033051-097,
NASA
,
Washington, DC
.
11.
Raju
,
K. S.
,
Dandayudhapani
,
S.
, and
Thorbole
,
C. K.
,
2008
, “
Characterization of In-Plane Shear Properties of Laminated Composites at Medium Strain Rates
,”
J. Aircr.
,
45
(
2
), pp.
493
497
.10.2514/1.30026
12.
Karni
,
J.
, and
Karni
,
E. Y.
,
1995
, “
Gypsum in Construction: Origin and Properties
,”
Mater. Struct.
,
28
, pp.
92
100
.10.1007/BF02473176
13.
Gupta
,
N. K.
, and
Abbas
,
H.
,
2000
, “
Lateral Collapse of Composite Cylindrical Tubes Between Flat Platens
,”
Int. J. Impact Eng.
,
24
, pp.
329
345
.10.1016/S0734-743X(99)00173-6
14.
Prosen
,
S. P.
,
Karpe
,
S.
,
Kinna
,
M. A.
,
Mueller
,
C.
,
Perry
,
H. A.
, and
Barnet
,
F. R.
,
1963
, “
Compression, Fatigue, and Stress Studies on NOL Ring Specimens
,”
Symposium for Filament Wound Reinforced Plastics, ASTM International
,
Naval Ordnance Laboratory White Oak, Silver Spring, MD
, pp.
105
122
.
15.
Guedes
,
R. M.
, and
Sa'
,
A.
,
2008
, “
Numerical Analysis of Singly Curved Shallow Composite Panels Under Three-Point Bend Load
,”
Compos. Struct.
,
83
, pp.
212
220
.10.1016/j.compstruct.2007.04.005
16.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
,
2005
, “
Effect of Packing on Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
Polym. Compos.
,
26
(
5
), pp.
614
627
.10.1002/pc.20132
17.
Kardos
,
J. L.
,
Dave
,
R.
, and
Dudukovic
,
M. P.
,
1988
, “
Voids in Composites
,”
Manufacturing Science of Composites
,
T. G.
Gutowski
, ed.,
ASME
,
Atlanta, GA
, pp.
41
48
.
18.
Browning
,
C. E.
,
1986
, “
Processing Science of Graphite/Epoxy Composites
,”
Chem. Eng. Prog.
,
82
(
6
), pp.
41
44
.
19.
Liu
,
L.
,
Zhang
,
B.-M.
,
Wang
,
D.-F.
, and
Wu
,
Z.-J.
,
2006
, “
Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates
,”
Compos. Struct.
,
73
, pp.
303
309
.10.1016/j.compstruct.2005.02.001
20.
Ghiorse
,
S. R.
,
1993
, “
Effect of Void Content on the Mechanical Properties of Carbon/Epoxy Laminates
,”
SAMPE Q.
,
24
(
2
), pp.
54
59
.
21.
Boey
,
F. Y. C.
, and
Lye
,
S. W.
,
1992
, “
Void Reduction in Autoclave Processing of Thermoset Composites Part 1: High Pressure Effects on Void Reduction
,”
Composites
,
23
(
4
), pp.
261
265
.10.1016/0010-4361(92)90186-X
22.
Muller de Almeida
,
S. F.
, and
dos Santos Nogueira Neto
,
Z.
,
1994
, “
Effect of Void Content on the Strength of Composite Laminates
,”
Compos. Struct.
,
28
, pp.
139
148
.10.1016/0263-8223(94)90044-2
23.
Hamidi
,
Y. K.
, and
Altan
,
M. C.
,
2003
, “
Spatial Variation of Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
J. Mater. Sci. Lett.
,
22
, pp.
1813
1816
.10.1023/B:JMSL.0000005428.88229.5b
24.
Blackmore
,
B.
,
Li
,
D.
, and
Gao
,
J.
,
2001
, “
Detachment of Bubbles in Slit Microchannels by Shearing Flow
,”
J. Colloid Interface Sci.
,
241
(
2
), pp.
514
520
.10.1006/jcis.2001.7755
25.
Barraza
,
H. J.
,
Hamidi
,
Y. K.
,
Aktas
,
L.
,
O'Rear
,
E. A.
, and
Altan
,
M. C.
,
2004
, “
Porosity Reduction in the High-Speed Processing of Glass-Fiber Composites by Resin Transfer Molding (RTM)
,”
J. Compos. Mater.
,
38
(
3
), pp.
195
226
.10.1177/0021998304038649
26.
Hagstrand
,
P. O.
,
Bonjour
,
F.
, and
Månson
,
J. A. E.
,
2005
, “
The Influence of Void Content on the Structural Flexural Performance of Unidirectional Glass Fibre Reinforced Polypropylene Composites
,”
Composites, Part A
,
36
(
5
), pp.
705
714
.10.1016/j.compositesa.2004.03.007
27.
Hancox
,
N. L.
,
1975
, “
The Compression Strength of Unidirectional Carbon Fibre Reinforced Plastic
,”
J. Mater. Sci.
,
10
, pp.
234
242
.10.1007/BF00540347
28.
Lenoe
,
E. M.
,
1970
, “
Effect of Voids on Mechanical Properties of Graphite Fiber Composites
,” AVSD-0166-71-RR, U.S.DOT Navy,
U.S. Naval Air Systems Command
,
Washington DC
.
29.
Tang
,
J. M.
,
Lee
,
I. W.
, and
Springer
,
G. S.
,
1987
, “
Effects of Cure Pressure on Resin Flow, Voids and Mechancial Properties
,”
J. Compos. Mater.
,
21
, pp.
421
440
.10.1177/002199838702100502
30.
Stringer
,
L. G.
,
1989
, “
Optimization of the Wet Lay-Up/Vacuum Bag Process for the Fabrication of Carbon Fibre Epoxy Composites With High Fibre Fraction and Low Void Content
,”
Composites
,
20
(
5
), pp.
441
452
.10.1016/0010-4361(89)90213-9
You do not currently have access to this content.