This paper is aimed to investigate the size-dependent pull-in behavior of hydrostatically and electrostatically actuated rectangular nanoplates including surface stress effects based on a modified continuum model. To this end, based on the Gurtin–Murdoch theory and Hamilton's principle, the governing equation and corresponding boundary conditions of an actuated nanoplate are derived; the step-by-step linearization scheme and the differential quadrature (GDQ) method are used to discretize the governing equation and associated boundary conditions. The effects of the thickness of the nanoplate, surface elastic modulus and residual surface stress on the pull-in instability of the nanoplate are investigated. Plates made of two different materials including aluminum (Al) and silicon (Si) are selected to explain the variation of the pull-in voltage and pressure with respect to plate thickness.

References

References
1.
Sasayama
,
T.
,
Suzuki
,
S.
,
Tsuchitani
,
S.
,
Koide
,
A.
,
Suzuki
,
M.
,
Ichikawa
,
N.
, and
Nakazawa
,
T.
,
1996
, “
Highly Reliable Silicon Micromachined Physical Sensors in Mass Production
,”
Sens. Actuators, A
,
54
, pp.
714
717
.10.1016/S0924-4247(97)80044-1
2.
Rezazadeh
,
G.
,
Tayefe-Rezaei
,
S.
,
Ghesmati
,
J.
, and
Tahmasebi
,
A.
,
2007
, “
Investigation of the Pull-In Phenomenon in Drug Delivery Micropump Using Galerkin Method
,”
Sens Transducers J.
,
78
(4), pp.
1098
1107
, available at: http://www.sensorsportal.com/HTML/DIGEST/P_134.htm
3.
Saif
,
M. T. A.
,
Alaca
,
B. E.
, and
Sehitoglu
,
H.
,
1999
, “
Analytical Modeling of Electrostatic Membrane Actuator Micro Pumps
,”
IEEE J. MEMS
,
8
, pp.
335
344
.10.1109/84.788638
4.
Zengerle
,
R.
,
Richter
,
A.
, and
Sandmaier
,
H.
,
1992
, “
A Micro Membrane Pump With Electrostatic Actuation
,”
Proceedings of the Micro Electro Mechanical Systems Conference
(
MEMS '92
),
Travemunde, Germany
, February 4–7, pp.
19
24
.10.1109/MEMSYS.1992.187684
5.
Bao
,
M. H.
,
Yang
,
H.
,
Yin
,
H.
, and
Shen
,
S. Q.
,
2000
, “
Effects of Electrostatic Forces Generated by the Driving Signal on Capacitive Sensing Devices
,”
Sens. Actuators, A
,
84
, pp.
213
219
.10.1016/S0924-4247(00)00312-5
6.
Lee
,
S.
,
Ramadoss
,
R.
,
Buck
,
M.
,
Bright
,
V. M.
,
Gupta
,
K. C.
,
Lee
,
Y. C.
,
2004
, “
Reliability Testing of Flexible Printed Circuit-Based RF MEMS Capacitive Switches
,”
Microelectron. Reliab.
,
44
, pp.
245
250
.10.1016/j.microrel.2003.09.002
7.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
,
1967
, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron Devices
,
14
(
3
), pp.
117
133
.10.1109/T-ED.1967.15912
8.
Taylor
,
G. I.
,
1968
, “
The Coalescence of Closely Spaced Drops When They Are at Different Electric Potentials
,”
Proc. R. Soc. A
,
306
, pp.
423
434
.10.1098/rspa.1968.0159
9.
Rezazadeh
,
G.
, and
Tahmasebi
,
A.
,
2006
, “
Eliminating of the Residual Stresses Effect in the Fixed-Fixed End Type MEM Switches by Piezoelectric Layers
,”
Sens Transducers J.
,
66
(
4
), pp.
534
542
, available at: http://www.sensorsportal.com/HTML/DIGEST/april_06/P_64.pdf
10.
Rezazadeh
,
G.
,
Tahmasebi
,
A.
, and
Zubtsov
,
M.
,
2006
, “
Application of Piezoelectric Layers in Electrostatic MEM Actuators, Controlling of Pull-In Voltage
,”
Microsyst. Technol.
,
12
(
12
), pp.
1163
1170
.10.1007/s00542-006-0245-5
11.
Sadeghian
,
H.
,
Rezazadeh
,
G.
,
Abbaspour
,
E.
,
Tahmasebi
,
A.
, and
Hosainzadeh
,
I.
,
2006
, “
The Effect of Residual Stress on Pull-In Voltage of Fixed-Fixed End Type MEM Switches With Variative Electrostatic Area
,”
Proc IEEE-NEMS, Zuhai
, pp.
18
21
.
12.
Lin
,
W. H.
, and
Zhao
,
Y. P.
,
2008
, “
Pull-In Instability of Micro-Switch Actuators: Model Review
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
9
(
2
), pp.
175
183
.10.1515/IJNSNS.2008.9.2.175
13.
Lin
,
W. H.
, and
Zhao
,
Y. P.
,
2005
, “
Casimir Effect on the Pull-In Parameters of Nanometer Switches
,”
Microsyst. Technol.
,
11
, pp.
80
85
.10.1007/s00542-004-0411-6
14.
Talebian
,
S.
,
Yagubizade
,
H.
, and
Rezazadeh
,
G.
,
2008
, “
Mechanical Behavior of a Rectangular Micro Plate With Hydrostatic and Electrostatic Pressures Actuation,” Proceedings of the 16th Annual (International) Conference on Mechanical Engineering (ISME 2008), Kerman, Iran, May 14–16
, pp.
14
16
.
15.
Nabian
,
A.
,
Rezazadeh
,
G.
,
Haddad-derafshi
,
M.
, and
Tahmasebi
,
A.
,
2008
, “
Mechanical Behavior of a Circular Microplate Subjected to Uniform Hydrostatic and Non-Uniform Electrostatic Pressure
,”
Microsyst. Technol.
,
14
, pp.
235
240
.10.1007/s00542-007-0425-y
16.
Soleymani
,
P.
,
Sadeghian
,
H.
,
Tahmasebi
,
A.
, and
Rezazadeh
,
G.
,
2006
, “
Pull-In Instability Investigation of Circular Micro Pump Subjected to Nonlinear Electrostatic Force
,”
Sens. Transducers J.
,
69
(
7
), pp.
622
628
, available at: http://www.sensorsportal.com/HTML/DIGEST/P_74.htm
17.
Sadeghian
,
H.
,
Yang
,
C. K.
,
Goosen
,
J. F. L.
,
van der Drift
,
E.
,
Bossche
,
A.
,
French
,
P. J.
,
van Keulen
,
F.
,
2009
, “
Characterizing Size-Dependent Effective Elastic Modulus of Silicon Nanocantilevers Using Electrostatic Pull-In Instability
,”
Appl. Phys. Lett.
,
94
,
221903
.10.1063/1.3148774
18.
Asghari
,
M.
,
Kahrobaiyan
,
M. H.
, and
Ahmadian
,
M. T.
,
2010
, “
A Nonlinear Timoshenko Beam Formulation Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
48
, p.
1749
.10.1016/j.ijengsci.2010.09.025
19.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2008
, “
The Size-Dependent Natural Frequency of Bernoulli–Euler Micro-Beams
,”
Int. J. Eng. Sci.
,
46
, p.
427
.10.1016/j.ijengsci.2007.10.002
20.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
, p.
3379
.10.1016/j.jmps.2008.09.007
21.
Park
,
S. K.
, and
Gao
,
X. L.
,
2006
, “
Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
, p.
2355
.10.1088/0960-1317/16/11/015
22.
Wang
,
L.
,
2010
, “
Size-Dependent Vibration Characteristics of Fluid-Conveying Microtubes
,”
J. Fluids Struct.
,
26
, p.
675
.10.1016/j.jfluidstructs.2010.02.005
23.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
, pp.
291
323
.10.1007/BF00261375
24.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
, pp.
431
440
.10.1016/0020-7683(78)90008-2
25.
Ansari
,
R.
, and
Sahmani
,
S.
,
2011
, “
Bending Behavior and Buckling of Nanobeams Including Surface Stress Effects Corresponding to Different Beam Theories
,”
Int. J. Eng. Sci.
,
49
, pp.
1244
1255
.10.1016/j.ijengsci.2011.01.007
26.
Wang
,
Z. Q.
,
Zhao
,
Y. P.
, and
Huang
,
Z. P.
,
2010
, “
The Effects of Surface Tension on the Elastic Properties of Nano Structures
,”
Int. J. Eng. Sci.
,
48
, pp.
140
150
.10.1016/j.ijengsci.2009.07.007
27.
Lim
,
C. W.
, and
He
,
L. H.
,
2004
, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness
,”
Int. J. Mech. Sci.
,
46
, pp.
1715
1726
.10.1016/j.ijmecsci.2004.09.003
28.
He
,
L. H.
,
Lim
,
C. W.
, and
Wu
,
B. S.
,
2004
, “
A Continuum Model for Size-Dependent Deformation of Elastic Films of Nano-Scale Thickness
,”
Int. J. Solids Struct.
,
41
, pp.
847
857
.10.1016/j.ijsolstr.2003.10.001
29.
Wang
,
Z. Q.
, and
Zhao
,
Y. P.
,
2009
, “
Self-Instability and Bending Behaviors of Nanoplates
,”
Acta Mech. Solida Sinica
,
22
(
6
), pp.
630
643
.10.1016/S0894-9166(09)60393-1
30.
Ren
,
Q.
, and
Zhao
,
Y. P.
,
2004
, “
Influence of Surface Stress on Frequency of Microcantilever-Based Biosensors
,”
Microsyst. Technol.
,
10
, pp.
307
314
.10.1007/s00542-003-0329-4
31.
Zhang
,
Y.
,
Ren
,
Q.
, and
Zhao
,
Y. P.
,
2004
, “
Modeling Analysis of Surface Stress on a Rectangular Cantilever Beam
,”
J. Phys. D: Appl. Phys.
37
, pp.
2140
2145
.10.1088/0022-3727/37/15/014
32.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
App. Phys. Lett.
,
90
, p.
231904
.10.1063/1.2746950
33.
He
,
J.
, and
Lille
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
, pp.
1798
1802
.10.1021/nl0733233
34.
Fu
,
Y.
, and
Zhang
,
J.
,
2011
, “
Size-Dependent Pull-In Phenomena in Electrically Actuated Nanobeams Incorporating Surface Energies
,”
Appl. Math. Model
,
35
, pp.
941
951
.10.1016/j.apm.2010.07.051
35.
Lu
,
P.
,
He
,
L. H.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
, “
Thin Plate Theory Including Surface Effects
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4631
4647
.10.1016/j.ijsolstr.2005.07.036
36.
Rezazadeh
,
G.
,
Alizadeh
,
Y.
, and
Yagubizade
,
H.
,
2007
, “
Effect of Residual Stress on Divergence Instability of Rectangular Microplate Subjected to Nonlinear Electrostatic Pressure
,”
Sens. Transducers J.
,
81
, pp.
1364
1372
, available at: http://www.sensorsportal.com/HTML/DIGEST/P_166.htm
37.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer
,
London
.
38.
Zhao
,
X.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2004
, “
A Reduced-Order Model for Electrically Actuated Microplates
,”
J. Micromech. Microeng.
,
14
, pp.
900
906
.10.1088/0960-1317/14/7/009
39.
Guo
,
J. G.
, and
Zhao
,
Y. P.
,
2005
, “
The Size-Dependent Elastic Properties of Nanofilms With Surface Effects
,”
J. App. Phys.
,
98
, p.
074306
.10.1063/1.2071453
You do not currently have access to this content.