In this study, mixed-mode fatigue tests are conducted using surface-cracked specimens. Slant surface-cracked specimens are prepared with crack angles of 15 deg, 30 deg, 45 deg, and 60 deg. It is shown that a “factory roof” fracture is formed at the deepest point of the surface crack due to ΔKIII and causes the crack growth rate to decrease. Additionally, fatigue crack growth is simulated using the superposition finite element method (FEM) with crack growth criteria. It is shown that conventional crack growth criteria are not applicable to factory roof fractures. Finally, a modified criterion for the prediction of crack growth rate is proposed, fatigue crack growth simulation is conducted using this criterion, and the results are compared with experimental results.

References

References
1.
Schollmann
,
M.
,
Kullmer
,
G.
,
Fulland
,
M.
, and
Richard
,
H. A.
,
1963
, “
A New Criterion for 3D Crack Growth Under Mixed-Mode (I + II + III) Loading
,”
Proceedings of 6th International Conference on Biaxial/Multiaxial Fatigue & Fracture
, Vol.
I
, pp.
589
596
.
2.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
534
.10.1115/1.3656900
3.
Lebaillif
,
D.
, and
Recho
,
N.
,
2007
, “
Brittle and Ductile Crack Propagation Using Automatic Finite Element Crack Box Technique
,”
Eng. Fract. Mech.
,
74
, pp.
1810
1824
.10.1016/j.engfracmech.2006.08.029
4.
Bittencourt
,
T. N.
,
1996
, “
Quasi-Automatic of Crack Propagation for 2D Lefm Problems
,”
Eng. Fract. Mech.
,
55
(
2
), pp.
321
334
.10.1016/0013-7944(95)00247-2
5.
dell'Erba
,
D. N.
, and
Aliabadi
,
M. H.
,
2000
, “
On the Solution of Three-Dimensional Thermo-Elastic Mixed-Mode Edge Crack Problems by the Dual Boundary Element Method
,”
Eng. Fract. Mech.
,
66
, pp.
269
285
.10.1016/S0013-7944(00)00015-1
6.
Citarella
,
R.
, and
Buchholz
,
F.-G.
,
2008
, “
Comparison of Crack Growth Simulation by DBEM and FEM for SEN-Specimens Undergoing Torsion or Bending Loading
,”
Eng. Fract. Mech.
,
75
, pp.
489
509
.10.1016/j.engfracmech.2007.03.039
7.
Richard
,
H. A.
,
Fulland
,
M.
, and
Sander
,
M.
,
2005
, “
Theoretical Crack Path Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
, pp.
3
12
.10.1111/j.1460-2695.2004.00855.x
8.
Maitireyimu
,
M.
,
Kikuchi
,
M.
, and
Geni
,
M.
,
2009
, “
Comparison of Experimental and Numerically Simulated Fatigue Crack Propagation
,”
J. Solid Mech. Mater. Eng.
,
3
(
7
), pp.
952
967
.10.1299/jmmp.3.952
9.
Fish
,
J.
,
Markolefas
,
S.
,
Guttal
,
R.
, and
Nayak
,
P.
,
1994
, “
On Adaptive Multilevel Superposition of Finite Element Meshes
,”
Appl. Numer. Math.
,
14
, pp.
135
164
.10.1016/0168-9274(94)90023-X
10.
Okada
,
H.
,
Endoh
,
S.
, and
Kikuchi
,
M.
,
2005
, “
On Fracture Analysis Using an Element Overlay Technique
,”
Eng. Fract. Mech.
,
72
, pp.
773
789
.10.1016/j.engfracmech.2004.05.003
11.
Rybicki
,
K. F.
, and
Kanninen
,
M. F.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
, pp.
931
938
.10.1016/0013-7944(77)90013-3
12.
Nuismer
,
R. J.
,
1975
, “
An Energy Release Rate Criterion for Mixed Mode Fracture
,”
Int. J. Fract.
,
11
(
2
), pp.
245
294
.10.1007/BF00038891
13.
Theocaris
,
P. S.
,
Kardomateas
,
G. A.
, and
Andrianopoulos
,
N. P.
,
1982
, “
Experimental Study of the T-Criterion in Ductile Fractures
,”
Eng. Fract. Mech.
,
17
(
5
), pp.
439
447
.10.1016/0013-7944(83)90040-1
You do not currently have access to this content.