Austenitic stainless steels—particularly the 304 and 316 families of alloys—exhibit similar trends in the dependence of yield stress on temperature. Analysis of temperature and strain-rate dependent yield stress literature data in alloys with varying nitrogen content and grain size has enabled the definition of two internal state variables characterizing defect populations. The analysis is based on an internal state variable constitutive law termed the mechanical threshold stress model. One of the state variables varies solely with nitrogen content and is characterized with a larger activation volume. The other state variable is characterized by a much smaller activation volume and may represent interaction of dislocations with solute and interstitial atoms. Analysis of the entire stress–strain curve requires addition of a third internal state variable characterizing the evolving stored dislocation density. Predictions of the model are compared to measurements in 304, 304L, 316, and 316L stainless steels deformed over a wide range of temperatures (up to one-half the melting temperature) and strain rates. Model predictions and experimental measurements deviate at temperatures above ∼600 K where dynamic strain aging has been observed. Application of the model is demonstrated in irradiated 316LN where the defect population induced by irradiation damage is analyzed. This defect population has similarities with the stored dislocation density. The proposed model offers a framework for modeling deformation in stable austenitic stainless steels (i.e., those not prone to a martensitic phase transformation).

References

References
1.
Clauss
,
F. J.
,
1969
,
Engineer’s Guide to High-Temperature Materials
,
Addison-Wesley, Reading
,
MA.
2.
Sandmeyer Steel Company
, “
304 Spec Sheet
,”
Philadelphia, PA
, http://www.sandmeyersteel.com/304.html
4.
Sandmeyer Steel Company
, “
304L Spec Sheet
,”
Philadelphia, PA
, http://www.sandmeyersteel.com/304L.html#1
5.
Follansbee
,
P. S.
, and
Kocks
,
U. F.
,
1988
, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,”
Acta Metall.
,
36
(
1
), pp.
81
93
.10.1016/0001-6160(88)90030-2
6.
Follansbee
,
P. S.
,
Huang
,
J. C.
, and
Gray
,
G. T.
,
1990
, “
Low Temperature and High-Strain-Rate Deformation of Nickel and Nickel-Carbon Alloys and Analysis of the Constitutive Behavior According to an Internal State Variable Model
,”
Acta Metall.
,
38
(
7
), pp.
1241
1254
.10.1016/0956-7151(90)90195-M
7.
Follansbee
,
P. S.
, and
Gray
,
G. T.
III
,
1989
, “
An Analysis of the Low Temperature, Low and High Strain-Rate Deformation of T-6Al-4V
,”
Metall. Trans. A
,
20A
, pp.
863
874
.
8.
Kocks
,
U. F.
,
1976
, “
Laws for Work Hardening and Low Temperature Creep
,”
ASME J. Eng. Mater. Technol.
,
98
, pp.
76
85
.10.1115/1.3443340
9.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
Kinetics of Flow and Srain Hardening
,”
Acta Metall.
,
29
, pp.
1865
1885
.10.1016/0001-6160(81)90112-7
10.
Estrin
,
Y.
,
1996
, “
Dislocation-Density-Related Constitutive Modeling
,”
Unified Constitutive Laws of Plastic Deformation
,
A. S.
Krausz
and
K.
Krausz
, eds.,
Academic Press
,
Maryland Heights, MO
, pp.
69
79
.
11.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
, “
Thermodynamics and Kinetics of Slip
,”
Progress in Materials Science
,
Pergamon Press
,
Oxford
, Vol.
19
.
12.
Follansbee
,
P. S.
,
2010
, “
Analysis of Deformation Kinetics in Seven Body Centered Cubic Pure Metals Using a Two-Obstacle Model
,”
Metall. Mater. Trans. A
,
41A
, pp.
3080
3089
.10.1007/s11661-010-0372-6
13.
Varshni
,
Y. P.
,
1970
, “
Temperature Dependence of the Elastic Constants
,”
Phys. Rev. B
,
2
(
10
), pp.
3952
3958
.10.1103/PhysRevB.2.3952
14.
Steichen
,
J. M.
, and
Paxton
,
M. M.
,
1971
, “
Interim Report—Effect of Strain Rate on the Mechanical Properties of Austenitic Stainless Steels
,”
Hanford Engineering Development Laboratory
, Report No. HEDL-TME-71-56.
15.
Follansbee
,
P. S.
,
2010
, “
A Lower-Bound Strength Model for AISI 304 SS
,”
Proceedings of MS&T 2010
,
Houston, TX.
16.
Follansbee
,
P. S.
,
Gross
,
D. J.
,
Minichiello
,
J.
, and
Rodriguez
,
E.
,
2011
, “
A Lower-Bound Temperature and Strain-Rate Dependent Strength Model for AISI 304 SS
,”
ASME Pressure Vessel and Piping Conference
,
Baltimore, MD
, Paper No. PVP2011-57399.
17.
Mathew
,
M. D.
,
Sundararaman
,
M.
, and
Mannan
,
S. L.
,
1997
, “
Dislocation Substructure and Precipitation in Type 316 Stainless Steel Deformed in Creep
,”
Mater. Trans., JIM
,
38
(
1
), pp.
37
42
.
18.
Morris
,
D. G.
,
1978
, “
Creep in Type 316 Stainless Steel
,”
Acta Metall.
,
26
, pp.
1143
1151
.10.1016/0001-6160(78)90142-6
19.
Powell
,
G. W.
,
Marshall
,
E. R.
, and
Backofen
,
W. A.
,
1958
, “
Strain Hardening of Austenitic Stainless Steel
,”
ASM Trans.,
L, pp.
478
497
.
20.
Reed
,
R. P.
,
1989
, “
Nitrogen in Austenitic Stainless Steels
,”
JOM
,
41
(
6
), pp.
16
21
.10.1007/BF03220991
21.
Turan
,
Y. N.
, and
Koursaris
,
A.
,
1993
, “
Nitrogen-Alloyed Stainless Steels and Their Properties
,”
J. S. Afr. Inst. Min. Metall.
,
93
(
4
), pp.
97
104
.
22.
Norström
,
L.-Å
,
1977
, “
The Influence of Nitrogen and Grain Size on Yield Strength in Type AISI 316L Austenitic Stainless Steel
,”
Met. Sci.
,
11
(
6
), pp.
208
212
.
23.
Brynes
,
M. L. G.
,
Grujicic
,
M.
, and
Owen
,
W. S.
,
1987
, “
Nitrogen Strengthening of a Stable Austenitic Stainless Steel
,”
Acta Metall.
,
37
(
7
), pp.
1853
1862
.
24.
Byun
,
T. S.
,
Hashimoto
,
N.
, and
Farrell
,
K.
,
2004
, “
Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels
,”
Acta Mater.
,
52
, pp.
3889
3899
.10.1016/j.actamat.2004.05.003
25.
Kelly
,
A.
, and
Nicholson
,
R. B.
, eds.,
1971
,
Strengthening Methods in Crystals
,
John Wiley and Sons
,
NY
, p.
293
.
26.
Hammond
,
J. P.
, and
Sikka
,
V. K.
,
1977
, “
Predicted Strains in Austenitic Stainless Steels at Stresses Above Yield
,”
ORNL Report
Conf-771120-18, available thru http://www.osti.gov/energycitations/
27.
Bronkhorst
,
C. A.
,
Kalidindi
,
S. R.
, and
Anand
,
L.
,
1991
, “
An Experimental and Analytical Study of the Evolution of Crystallographic Texture in FCC Materials
,”
Textures Microstruct.
,
14–18
, pp.
1031
1036
.
28.
Haasen
,
P.
,
1958
, “
Plastic Deformation of Nickel Single Crystals at Low Temperatures
,”
Philos. Mag.
,
3
(
28
), pp.
384
418
.10.1080/14786435808236826
29.
Schoeck
,
G.
, and
Seeger
,
A.
,
1955
,
Defects in Crystalline Solids
,
Physical Society
,
London
.
30.
Albertini
,
C.
, and
Montagnani
,
M.
,
1980
, “
Dynamic Uniaxial and Biaxial Stress-Strain Relationships for Austenitic Stainless Steels
,”
Nucl. Eng. Des.
,
57
, pp.
107
123
.10.1016/0029-5493(80)90226-5
31.
Conway
,
J. B.
,
Stentz
,
R. H.
, and
Berling
,
J. T.
,
1974
, “
Fatigue, Tensile and Relaxation Behavior of Stainless Steels
,”
Report commissioned by the U. S. Atomic Energy Commission Division of Reactor Research and Development
, available from NTIS, Report No. TID26135.
32.
Gray
,
G. T.
III
, and
Chen
,
S. R.
, “
MST-8 Constitutive Properties & Constitutive Modeling
,”
Report Nos. LA-CP-07-1590 and LA-CP-03-006 (Must request data from LANL authors)
.
33.
Stout
,
M. G.
, and
Follansbee
,
P. S.
,
1986
, “
Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel
,”
Trans. ASME J. Eng. Mater. Technol.
,
108
, pp.
344
353
.10.1115/1.3225893
34.
Steichen
,
J. M.
,
1971
, “
High Strain Rate Mechanical Properties of Types 304 Stainless Steel and Nickel 200 (RM-14)
,”
Hanford Engineering Development Laboratory
, Report No. HEDL-TME-71-145,
Richland, WA.
35.
Samuel
,
K. G.
,
Mannan
,
S. L.
, and
Rodriguez
,
P.
,
1988
, “
Serrated Yielding in AISI 316 Stainless Steel
,”
Acta Metall.
,
36
(
8
), pp.
2423
2327
.
36.
Peng
,
K.
Qian
,
K.
, and
Chen
,
W.
,
2004
, “
Effect of Dynamic Strain Aging on High Temperature Properties of Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
379
, pp.
372
377
.10.1016/j.msea.2004.03.004
37.
Cheng
,
J.
,
Nemat-Nasser
,
S.
, and
Guo
,
W.
,
2001
, “
A Unified Model for Strain-Rate and Temperature Dependent Behavior of Molybdenum
,”
Mech. Mater.
,
33
, pp.
603
616
.10.1016/S0167-6636(01)00076-X
38.
Dai
,
Y.
,
Egeland
,
G. W.
, and
Long
,
B.
,
2008
, “
Tensile Properties of ECX316LN Irradiated in SINQ to 20 dpa
,”
J. Nucl. Mater.
,
377
, pp.
109
114
.10.1016/j.jnucmat.2008.02.035
39.
Garner
,
F. A.
,
Hamilton
,
M. L.
,
Panayotou
,
N. F.
, and
Johnson
,
G. D.
,
1981
, “
The Microstructural Origins of Yield Strength Changes in AISI 316 During Fission or Fusion Irradiation
,”
J. Nucl. Mater.
,
103 and 104
, pp.
803
808
10.1016/0022-3115(82)90698-5
40.
Byun
,
T. S.
, and
Farrell
,
K.
,
2004
, “
Plastic Instability in Polycrystalline Metals After Low Temperature Irradiation
,”
Acta Mater.
,
52
, pp.
1597
1608
.10.1016/j.actamat.2003.12.023
You do not currently have access to this content.