Metal–ceramic composites are an emerging class of materials for use in the next-generation high technology applications due to their ability to sustain plastic deformation and resist failure in extreme mechanical environments. Large scale molecular dynamics simulations are used to investigate the performance of nanocrystalline metal–matrix composites (MMCs) formed by the reinforcement of the nanocrystalline Al matrix with a random distribution of nanoscale ceramic particles. The interatomic interactions are defined by the newly developed angular-dependent embedded atom method (A-EAM) by combining the embedded atom method (EAM) potential for Al with the Stillinger–Weber (SW) potential for Si in one functional form. The molecular dynamics (MD) simulations are aimed to investigate the strengthening behavior and the tension–compression strength asymmetry of these composites as a function of volume fraction of the reinforcing Si phase. MD simulations suggest that the strength of the nanocomposite increases linearly with an increase in the volume fraction of Si in the Al-rich region, whereas the increase is very sharp in the Si-rich region. The higher strength of the nanocomposite is attributed to the reduced sliding/rotation between the Al/Si and the Si/Si grains as compared to the pure nanocrystalline metal.

References

References
1.
Mortensen
,
A.
, and
Suresh
,
S.
,
1995
, “
Functionally Graded Metals and Metal-Ceramic Composites: Part 1 Processing
,”
Int. Mater. Rev.
,
40
,
pp.
239
265
. Available at: http://www.ingentaconnect.com/content/maney/imr/1995/00000040/00000006/art00002.
2.
Suresh
,
S.
, and
Mortensen
,
A.
,
1997
, “
Functional Graded Metals and Metal-Ceramic Composites: Part 2 Thermomechanical Behavior
,”
Int. Mater. Rev.
,
42
,
pp.
85
116
.10.1179/095066097790093217
3.
Li
,
Y.
,
Ramesh
,
K. T.
, and
Chin
,
E. S. C.
,
2007
, “
Plastic Deformation and Failure in A359 Aluminum and an A359-SiCp MMC Under Quasistatic and High-Strain-Rate Tension
,”
J. Compos. Mater.
,
41
,
pp.
27
40
.10.1177/0021998306063351
4.
Li
,
Y.
, and
Ramesh
,
K. T.
,
1998
, “
Influence of Particle Volume Fraction, Shape, and Aspect Ratio on the Behavior of Particle-Reinforced Metal–Matrix Composites at High Rates of Strain
,”
Acta Mater.
,
46
,
pp.
5633
5646
.10.1016/S1359-6454(98)00250-X
5.
Chawla
,
N.
, and
Shen
,
Y.-L.
,
2001
, “
Mechanical Behavior of Particle Reinforced Metal Matrix Composites
,”
Adv. Eng. Mater.
,
3
,
pp.
357
370
.10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
6.
Dongare
,
A. M.
,
Rajendran
,
A. M.
,
LaMattina
,
B.
,
Zikry
,
M. A.
, and
Brenner
,
D. W.
,
2010
, “
Effect of Strain Rate on Tension-Compression Asymmetry in Nanocrystalline Cu
,”
Comput. Mater. Sci.
,
49
,
pp.
260
265
.10.1016/j.commatsci.2010.05.004
7.
Dongare
,
A. M.
,
Rajendran
,
A. M.
,
LaMattina
,
B.
,
Brenner
,
D. W.
, and
Zikry
,
M. A.
,
2010
, “
Atomic Scale Study of Plastic-Yield Criterion in Nanocrystalline Metals Using Molecular Dynamics Simulations
,”
Metall. Mater. Trans. A
,
41A
,
pp.
523
531
.10.1007/s11661-009-0113-x
8.
Dongare
,
A. M.
,
Rajendran
,
A. M.
,
LaMattina
,
B.
,
Zikry
,
M. A.
, and
Brenner
,
D. W.
,
2009
, “
Atomic Scale Simulations of Ductile Failure Micromechanisms in Nanocrystalline Cu at High Strain Rates
,”
Phys. Rev. B
,
80
, p.
104108
.10.1103/PhysRevB.80.104108
9.
Dongare
,
A. M.
,
Rajendran
,
A. M.
,
LaMattina
,
B.
,
Zikry
,
M. A.
, and
Brenner
,
D. W.
,
2010
, “
Atomic Scale Studies of Spall Behavior in Nanocrystalline Cu
,”
J. Appl. Phys.
,
108
, p.
113518
.10.1063/1.3517827
10.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
,
pp.
6443
6453
.10.1103/PhysRevB.29.6443
11.
Foiles
,
S. M.
,
1985
, “
Application of the Embedded-Atom Method to Liquid Transition Metals
,”
Phys. Rev. B
,
32
,
pp.
3409
3415
.10.1103/PhysRevB.32.3409
12.
Johnson
,
R. A.
,
1988
, “
Analytic Nearest-Neighbor Model for fcc Metals
,”
Phys. Rev. B
,
37
,
pp.
3924
3931
.10.1103/PhysRevB.37.3924
13.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
,
pp.
5262
5271
.10.1103/PhysRevB.31.5262
14.
Ding
,
K.
, and
Andersen
,
H.
,
1986
, “
Molecular-Dynamics Simulation of Amorphous Germanium
,”
Phys. Rev. B
,
34
,
pp.
6987
6991
.10.1103/PhysRevB.34.6987
15.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
,
pp.
6991
7000
.10.1103/PhysRevB.37.6991
16.
Tersoff
,
J.
,
1988
, “
Empirical Interatomic Potential for Carbon, With Applications to Amorphous Carbon
,”
Phys. Rev. Lett.
,
61
,
pp.
2879
2882
.10.1103/PhysRevLett.61.2879
17.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
,
pp.
9458
9471
.10.1103/PhysRevB.42.9458
18.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S.
,
Ni
,
B.
, and
Sinnot
,
S. B.
,
2001
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
,
pp.
783
802
.10.1088/0953-8984/14/4/312
19.
Dongare
,
A. M.
,
Neurock
,
M.
, and
Zhigilei
,
L. V.
,
2009
, “
Angular-Dependent Embedded Atom Method Potential for Atomistic Simulations of Metal-Covalent Systems
,”
Phys. Rev. B
,
80
, p.
184106
.10.1103/PhysRevB.80.184106
20.
Dongare
,
A. M.
,
Zhigilei
,
L. V.
,
Rajendran
,
A. M.
, and
LaMattina
,
B.
,
2009
, “
Atomic Scale Modeling of Multi-Component Interactions in Nanocomposites
,”
Composites, Part B
,
40
,
pp.
461
467
.10.1016/j.compositesb.2009.02.001
21.
Dongare
,
A. M.
,
LaMattina
,
B.
,
Irving
,
D. L.
,
Rajendran
,
A. M.
,
Zikry
,
M. A.
, and
Brenner
,
D. W.
,
2012
, “
An Angular-Dependent Embedded Atom Method (A-EAM) Interatomic Potential to Model Thermodynamic and Mechanical Behavior of Al/Si Composite Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
, p.
035007
.10.1088/0965-0393/20/3/035007
22.
Mishin
,
Y.
,
Farkas
,
D.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
,
1999
, “
Interatomic Potentials for Monoatomic Metals From Experimental Data and Ab Initio Calculations
,”
Phys. Rev. B
,
59
,
pp.
3393
3407
.10.1103/PhysRevB.59.3393
23.
Keblinski
,
P.
,
Wolf
,
D.
, and
Gleiter
,
H.
,
1998
, “
Molecular-Dynamics Simulation of Grain-Boundary Diffusion Creep
,”
Interface Sci.
,
6
,
pp.
205
212
.10.1023/A:1008664218857
24.
Kanibolotsky
,
D. S.
,
Bieloborodova
,
O. A.
,
Kotova
,
N. V.
, and
Lisnyak
,
V. V.
,
2002
, “
Thermodynamic Properties of Liquid Al-Si and Al-Cu Alloys
,”
J. Therm. Anal. Calorim.
,
70
,
pp.
975
983
.10.1023/A:1022285010138
25.
Predel
,
B.
,
1991
,
Landolt-Bornstein, Group IV Physical Chemistry—Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys
,
O. Madelung, ed.
,
Springer, Berlin
,
Vol.
5
,
pp.
1615
2018
.
26.
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
,
2003
, “
Atomic Positional Disorder in fcc Metal Nanocrystalline Grain Boundaries
,”
Phys. Rev. B
,
67
, p.
014202
.10.1103/PhysRevB.67.014202
27.
Honneycutt
,
D. J.
, and
Andersen
,
H. C.
,
1987
, “
Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters
,”
J. Phys. Chem.
,
91
,
pp.
4950
4963
.10.1021/j100303a014
28.
Tamura
,
H.
,
Kohama
,
T.
,
Kondo
,
K.
, and
Yoshida
,
M.
,
2001
, “
Femtosecond-Laser-Induced Spallation in Aluminum
,”
J. Appl. Phys.
,
89
,
pp.
3520
3522
.10.1063/1.1346996
29.
Moshe
,
E.
,
Eliezer
,
S.
,
Dekel
,
E.
,
Henis
,
Z.
,
Ludmirsky
,
A.
,
Goldberg
,
I. B.
, and
Eliezer
,
D.
,
1999
, “
Measurements of Laser Driven Spallation in Tin and Zinc Using an Optical Recording Velocity Interferometer System
,”
J. Appl. Phys.
,
86
,
pp.
4242
4248
.10.1063/1.371352
30.
Hertzberg
,
R. W.
,
1996
,
Deformation and Fracture Mechanics of Engineering Materials
,
4th ed.
,
Wiley
,
New York
.
31.
Vo
,
N. Q.
,
Averback
,
R. S.
,
Bellon
,
P.
,
Odunuga
,
S.
, and
Caro
,
A.
,
2008
, “
Quantitative Description of Plastic Deformation in Nanocrystalline Cu: Dislocation Glide Versus Grain Boundary Sliding
,”
Phys. Rev. B
,
77
, p.
134108
.10.1103/PhysRevB.77.134108
32.
Demkowicz
,
M. J.
,
Argon
,
A. S.
,
Farkas
,
D.
, and
Frary
,
M.
,
2007
, “
Simulation of Plasticity in Nanocrystalline Silicon
,”
Philos. Mag.
,
87
,
pp.
4253
4271
.10.1080/14786430701358715
33.
Ward
,
D. K.
,
Curtin
,
W. A.
, and
Qi
,
Y.
,
2006
, “
Mechanical Behavior of Aluminum–Silicon Nanocomposites: A Molecular Dynamics Study
,”
Acta Mater.
,
54
,
pp.
4441
4451
.10.1016/j.actamat.2006.05.022
You do not currently have access to this content.