In this work, an atomistic-based finite temperature multiscale interphase finite element method has been developed, and it has been applied to study fracture process of metallic materials at finite temperature. The coupled thermomechanical finite element formulation is derived based on continuum thermodynamics principles. The mesoscale constitutive relations and thermal conduction properties of materials are enriched by atomistic information of the underneath lattice microstructure in both bulk elements and interphase cohesive zone. This is accomplished by employing the Cauchy–Born rule, harmonic approximation, and colloidal crystal approximation. A main advantage of the proposed approach is its ability to capture the thermal conduction inside the material interface. The multiscale finite element procedure is performed to simulate an engineering nickel plate specimen with weak interfaces under uni-axial stretch. The simulation results indicate that the crack propagation is slowed down by thermal expansion, and a cooling region is found in the front of crack tip. These phenomena agree with related experimental results. The effect of different loading rates on fracture is also investigated.

References

References
1.
Tadmor
,
E.
,
Ortiz
,
M.
, and
Phillips
,
R.
, 1996, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
,
73
(
6
), pp.
1529
1563
.
2.
Gao
,
H.
, and
Ji
,
B.
, 2003, “
Modeling Fracture in Nanomaterials Via a Virtual Internal Bond Method
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1777
1791
.
3.
Ji
,
B.
, and
Gao
,
H.
, 2004, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
4.
Ji
,
B.
, and
Gao
,
H.
, 2004, “
A Study of Fracture Mechanisms in Biological Nano-Composites via the Virtual Internal Bond Model
,”
Mater. Sci. Eng., A
,
366
(
1
), pp.
96
103
.
5.
Park
,
H. S.
,
Karpov
,
E. G.
,
Liu
,
W. K.
, and
Klein
,
P. A.
, 2005, “
The Bridging Scale for Two-Dimensional Atomistic/Continuum Coupling
,”
Philos. Mag.
,
85
(
1
), pp.
79
113
.
6.
Zeng
,
X.
, and
Li
,
S.
, 2010, “
A Multiscale Cohesive Zone Model and Simulations of Fractures
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
9-12
), pp.
547
556
.
7.
Qian
,
J.
, and
Li
,
S.
, 2011, “
Application of Multiscale Cohesive Zone Model to Simulate Fracture in Polycrystalline Solids
,”
ASME J. Eng. Mater. Technol.
,
133
(
1
), p.
011010
.
8.
He
,
M.
, and
Li
,
S.
, 2011, “
An Embedded Atom Hyperelastic Constitutive Model and Multiscale Cohesive Finite Element Method
,”
Comput. Mech.
,
49
, pp.
337
355
.
9.
Liu
,
X.
, 2006, “
Perfectly Matched Multiscale Simulations
,” Ph.D. thesis, University of California, Berkeley.
10.
Liu
,
X.
, and
Li
,
S.
, 2007, “
Nonequilibrium Multiscale Computational Model
,”
J. Chem. Phys.
,
126
(
12
), p.
124105
.
11.
Yang
,
W.
, 2007, “
Temperature-Dependent Homogenization Technique and Nanoscale Meshfree Particle Methods
,” Ph.D. thesis, University of Iowa, Iowa City, IA.
12.
Harris
,
W. J.
, 1983,
Statistical Mechanics of Elasticity
,
Academic Press
,
New York
.
13.
LeSar
,
R.
,
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
, 1989, “
Finite-Temperature Defect Properties From Free-Energy Minimization
,”
Phys. Rev. Lett.
,
63
(
6
), p.
624
.
14.
Zhao
,
R. N. L.
, and
Srolovitz
,
D.
, 1993, “
Finite Temperature Vacancy Formation Thermodynamics: Local Harmonic and Quasiharmonic Studies
,”
Modell. Simul. Mater. Sci. Eng.
,
1
(
4
), pp.
539
551
.
15.
Phillpot
,
S. R.
, and
Rickman
,
J. M.
, 1991, “
Calculation of the Free Energy of Solids From the Energy Distribution Function
,”
J. Chem. Phys.
,
94
(
2
), pp.
1454
1464
.
16.
Li
,
S.
, and
Sheng
,
N.
, 2010, “
On Multiscale Non-Equilibrium Molecular Dynamics Simulations
,”
Int. J. Numer. Methods Eng.
,
83
(
8-9
), pp.
998
1038
.
17.
Krishna
,
P.
, and
Pandey
,
D.
, 2001,
Close-Packed Structures
,
University College Cardiff Press
,
Cardiff, United Kingdom
.
18.
Schall
,
P.
,
Cohen
,
I.
,
Weitz
,
D.
, and
Spaepen
,
F.
, 2005, “
Visualizing Dislocation Nucleation by Indenting Colloidal Crystals
,”
Nature
,
440
, pp.
319
323
.
19.
Suresh
,
S.
, 2005, “
Colloid Model for Atoms
,”
Nature Mater.
,
5
, pp.
253
254
.
20.
Israelachvili
,
J.
, 1992,
Intermolecular and Surface Forces
,
Academic
,
New York
.
21.
Li
,
S.
,
Zeng
,
X.
,
Ren
,
B.
,
Zhang
,
J.
,
He
,
M.
, and
Jha
,
A.
, 2012, “
An Atomistic-Based Multiscale Finite Element Method and Simulation of Fracture
,”
Comput. Methods Appl. Mech. Eng
,
229–232
, pp.
87
109
.
22.
Hattiangadi
,
A.
, and
Siegmund
,
T.
, 2004, “
A Thermomechanical Cohesive Zone Model for Bridged Delamination Cracks
,”
J. Mech. Phys. Solids
,
52
(
3
), pp.
533
566
.
23.
Houghes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall, Englewood Cliffs
,
NJ.
24.
Flores
,
K. M.
, and
Dauskardt
,
R. H.
, 1999, “
Local Heating Associated With Crack Tip Plasticity in Zr-Ti-Ni-Cu-Be Bulk Amorphous Metals
,”
J. Mater. Res.
, pp.
638
643
.
25.
Estevez
,
R.
, and
Basu
,
S.
, 2008, “
On the Importance of Thermo-Elastic Cooling in the Fracture of Glassy Polymers at High Rates
,”
Int. J. Solids Struct.
,
45
(
11-12
), pp.
3449
3465
.
26.
Gao
,
H.
,
Ji
,
B.
,
Jager
,
I.
,
Arzt
,
E.
, and
Fratzl
,
P.
, 2003, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci.
,
100
(
10
), pp.
5597
5600
.
You do not currently have access to this content.