To investigate the effects of coating layer thickness on stress and the debonding behavior near the interface of coating layer and substrate, multiscale analysis is a must since molecular dynamics (MD) simulations can only be performed on models with thicknesses of about tens of nanometers on common computers, but the real thicknesses of such layers are around 300–1200 nm. In this work, generalized particle dynamics (GP) modeling for Al coated on Fe is first developed by using an atomistic domain near the layer interface and having high-scale particles far from that region to reduce degrees of freedom. Results show that the thicker coatings experience lower local average shearing stresses for a given shear strain. However, it is found that when the layer thickness reaches a large value, further increase of the layer thickness will not greatly benefit the reduction of the stress, thereby not increasing the allowable load. This trend is consistent with the simulation for Al2O3 coated on Fe by a hierarchical multiscale analysis which is formulated by proposing a nanoscale-based key variable, Gdb, called debonding energy density. This variable, defined by the debonding energy per unit area, is used to characterize material bonding strength in realizing that failure originates from the atomistic and nanoscale. The difference and connection of this low-scale fracture variable, Gdb, with crack energy release rate, GIC, in traditional fracture mechanics is illustrated and how Gdb can be easily determined through atomistic simulation is exemplified. To make the new variable effective in engineering applications, Gdb is used as input to a macroscopic scale finite element model. The obtained layer-thickness effect directly confirms the existence of a critical thickness, predicted by the GP method. This work is an effort in developing material failure theory from lower scales where material fracture originates but with applications in continuum scale via both hierarchical and concurrent multiscale analyses.

References

References
1.
Eliezer
,
A.
,
Gutman
,
E. M.
,
Abramov
,
E.
, and
Aghion
,
E.
, 1998, “
Corrosion Fatigue and Mechanical Behavior of Magnesium Alloys
,”
Corrosion Reviews, Special Issue on Corrosion Resistance of Magnesium Alloys
,
B. L.
Mordike
ed.,
Freund Publication House Ltd
,
London
, Vol.
16
, pp.
1
26
.
2.
Powell
,
B. R.
,
Rezhets
,
V.
,
Balogh
,
M. P.
, and
Waldo
,
R. A.
, 2001, “
The Relationship Between Microstructure and Creep Behavior in AE42 Magnesium Die Casting Alloy
,”
Magnesium Technology 2001
,
J.
Hryn
, ed.,
Minerals, Metals and Materials Society
, pp.
175
182
.
3.
Qu
,
C.
,
Li
,
P.
,
Fan
,
J.
,
Edwards
,
D. D.
,
Schulze
,
W.
,
Wynick
,
G.
,
Miller
,
R. E.
,
Lin
,
L.
,
Fang
,
Q.
,
Bryson
,
K.
,
Rubin
,
H.
, and
Wang
,
X. W.
2010, “
Aluminum Oxide and Silicon Nitride Thin Films as Anti-Corrosion Layers
,”
Ceram. Eng. Sci. Proc.
,
31
, pp.
123
134
.
4.
Liu
,
Y.
,
Qu
,
C.
,
Miller
,
R. E.
,
Edwards
,
D. D.
,
Fan
,
J. H.
,
Li
,
P.
,
Pierce
,
E.
,
Geleil
,
A.
,
Wynick
,
G.
, and
Wang
,
X. W.
, 2010, “
Comparison of Oxide and Nitride Thin Films—Electrochemical Impedance Measurements and Materials Properties
,”
Ceram. Trans.
,
214
, Proceedings of 8th Pacific Rim Conference on Ceramic and Glass Technology, PACRIM 8, Vancouver, Canada,
M.
Singh
, ed.,
American Ceramic Society/J. Wiley & Sons
,
Hoboken, NJ
, pp.
131
146
.
5.
Lin
,
L.
,
Qu
,
C.
,
Kasica
,
R.
,
Fang
,
Q.
,
Miller
,
R. E.
,
Pierce
,
E.
,
McCarty
,
E.
,
Fan
,
J. H.
,
Edwards
,
D. D.
,
Wynick
,
G.
, and
Wang
,
X. W.
, 2011, “
Multilayer Coatings for Anti-Corrosion Applications
,”
Ceram. Eng. Sci. Proc.
,
32
, Proceedings of 35th International Conference on Advanced Ceramics and Composites Daytona Beach, FL,
S.
Widjaja
and
D.
Singh
, eds.,
American Ceramic Society/John Wiley & Sons
,
Hoboken, NJ
, p.
59
.
6.
Espinosa
,
H. D.
,
Panico
,
M.
,
Berbenni
,
S.
, and
Schwarz
,
K. W.
, 2006, “
Discrete Dislocation Dynamics Simulations to Interpret Plasticity Size and Surface Effects in Freestanding FCC Thin Films
,”
Int. J. Plast.
,
22
, pp.
2091
2117
.
7.
Aifantis
,
E. C.
, 1992, “
On the Role of Gradients in the Locations of Deformation and Fracture
,”
Int. J. Eng. Sci.
,
30
, pp.
1279
1299
.
8.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1993, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
9.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1997, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
10.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
, pp.
411
425
.
11.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 1999, “
Mechanism-Based Strain Gradient Plasticity-I Theory
,”
J. Mech. Phys. Solids
,
47
, pp.
1239
1263
.
12.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 2000, “
Mechanism-Based Strain Gradient Plasticity—II Analysis
,”
J. Mech. Phys. Solids
,
48
, pp.
99
128
.
13.
Espinosa
,
H. D.
,
Prorok
,
B. C.
, and
Peng
,
B.
, 2004, “
Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,”
J. Mech. Phys. Solids
,
52
, pp.
667
689
.
14.
Nix
,
W. D.
, 1989, “
Mechanical Properties of Thin Films
,”
Metall. Trans. A.
,
20
, pp.
2217
2245
.
15.
Venkatraman
,
R.
, and
Bvavman
,
J. C.
, 1992, “
Separation of Film Thickness and Grain-Boundary Strengthening on Si
,”
J. Mater. Res.
,
7
(
8
), pp.
2040
2048
.
16.
Liu
,
X. H.
,
Ross
,
F. M.
, and
Schwarz
,
K. W.
, 2000, “
Dislocated Epitaxial Islands
,”
Phys. Rev. Lett.
,
85
, pp.
4088
4091
.
17.
Madic
,
R.
,
Devincre
,
B.
,
Kubin
,
L.
,
Hoc
,
T.
, and
Rodney
,
D.
, 2003, “
The Role of Collinear Interaction in Dislocation-Induced Hardening
,”
Science
,
301
(
5641
), pp.
1879
1882
.
18.
Schwarz
,
K. W.
, 1999,
Simulation of Dislocations on the Mesoscopic Scale I. Methods and Examples
,”
J. Appl. Phys.
,
85
(
1
), pp.
108
119
.
19.
Fan
,
J.
, 2011,
Multiscale Analysis of Deformation and Failure of Materials
,
John Wiley & Sons
,
West Sussex, UK
.
20.
Zavattiri
,
P. D.
,
Raghuram
,
P. V.
, and
Espinosa
,
H. D.
, 2001, “
A Computational Model of Ceramic Microstructures Subjected to Multi-Axial Dynamic Loading
,”
J. Mech. Phys. Solids
,
49
, pp.
27
68
.
21.
Iesulauro
,
E.
,
Ingraffea
,
A. R.
,
Arwards
,
S.
, and
Wawrzynek
,
P. A.
, 2002, “
Simulation of Grain Boundary Decohesion and Crack Initiation in Aluminum Microstructure Models
,” Vol.
33
,
Fatigue and Fracture Mechanics
,
W. G.
Reuter
and
R. S.
Piascik
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, ASTM Paper No. STP 1417.
22.
Zavattieri
,
P. D.
, and
Espinosa
,
H. D.
, 2003, “
An Examination of the Competition Between Bulk Behavior and Interfacial Behavior of Ceramics Subjected to Dynamic Pressure-Shear Loading
,”
J. Mech. Phys. Solids
,
51
, pp.
607
635
.
23.
Wei
,
Y. J.
, and
Anand
,
L.
, 2004,
Grain-Boundary Sliding and Separation in Polycrystalline Metals: Applications to Nanocrystalline FCC Metals
,”
J. Mater. Res.
,
5
, pp.
1708
1730
.
24.
Wei
,
Y.
, and
Hutchinson
,
J. W.
, 2008, “
Toughness of Ni/Al2O3 Interfaces as Dependent on Micron-Scale Plasticity and Atomistic-Scale Separation
,”
Philos. Mag.
,
88
(
30–32
), pp.
3841
3859
.
25.
Fan
,
H. B.
, and
Yuen
,
M. M. F.
, 2010, “
A Multi-Scale Approach for Investigation of Interfacial Delamination in Electronic Packages
,”
Microelectron. Reliab.
,
50
, pp.
893
899
.
26.
Yamakov
,
V.
,
Saether
,
E.
,
Phillips
,
D. R.
, and
Glaessgen
,
E. H.
, 2006, “
Molecular-Dynamics Simulation-Based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum
,”
J. Mech. Phys. Solids
,
54
, pp.
1899
1928
.
27.
Krull
,
H.
, and
Yuan
,
H.
, 2011, “
Suggestions to the Cohesive Traction-Separation Law From Atomistic Simulations
,”
Eng. Fract. Mech.
,
78
, pp.
525
533
.
28.
Zhou
,
X. W.
,
Zimmerman
,
J. A.
,
Reedy
,
E. D.
, and
Moody
,
N. R.
, 2008, “
Molecular Dynamics Simulation Based Cohesive Surface Representation of Mixed Mode Fracture
,”
Mech. Mater.
,
40
, pp.
832
845
.
29.
Zhou
,
X. W.
,
Moody
,
N. R.
,
Jones
,
R. E.
,
Zimmerman
,
J. A.
, and
Reedy
,
E. D.
, 2009, “
Molecular-Dynamics-Based Cohesive Zone Law for Brittle Interfacial Fracture Under Mixed Loading Conditions: Effects of Elastic Constant Mismatch
,”
Acta. Mater.
,
57
, pp.
4671
4686
.
30.
Lloyd
,
J. T.
,
Zimmerman
,
J. A.
,
Jones
,
R. E.
,
Zhou
,
X. W.
, and
McDowell
,
D. L.
, 2011, “
Finite Element Analysis of an Atomistically Derived Cohesive Model for Brittle Fracture
,”
Model. Simul. Mater. Sci. Eng.
,
19
(
065007
), pp.
1
18
.
31.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
, 2011, “
Molecular Dynamics Based Cohesive Zone Law for Describing Al-Sic Interface Mechanics
,”
Composites, Part A
,
42
, pp.
355
363
.
32.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
, 2011, “
Effect of Porosity on the Interface Behavior of an Al2O3-Aluminum Composite: A Molecular Dynamics Study
,”
Compos. Sci. Technol.
,
71
, pp.
350
356
.
33.
Tsai
,
J. L.
,
Tzeng
,
S. H.
, and
Tzou
,
Y. J.
, 2010, “
Characterizing the Fracture Parameters of a Graphene Sheet Using Atomistic Simulation and Continuum Mechanics
,”
Int. J. Solids Struct.
,
47
, pp.
503
509
.
34.
Awasthi
,
A. P.
,
Lagoudas
,
D. C.
, and
Hammerand
,
D. C.
, 2009, “
Modeling of Grapheme-Polymer Interfacial Mechanical Behavior Using Molecular Dynamics
,”
Model. Simul. Mater. Sci. Eng.
,
17
(
0015002
), pp.
1
37
.
35.
Fan
,
J.
,
Stewart
,
R.
, and
Zeng
,
X
, 2011, “
A Multiscale Method for Dislocation Nucleation and Seamlessly Passing Scale Boundaries
,”
Int. J. Plast.
,
27
, pp.
2103
2124
.
36.
Fan
,
J.
, 2009, “
Multiscale Analysis Across Atoms/Continuum by a Generalized Particle Dynamics Method
,”
Multiscale Model. Simul.
,
8
(
1
), pp.
228
253
.
37.
Zhou
,
M.
, 2003, “
A New Look at the Atomistic Virial Stress: On Continuum-Molecular System Equivalence
,”
Proc. R. Soc. London
,
459
, pp.
2347
2392
.
38.
Tateyama
,
S.
,
Shibuta
,
Y.
, and
Suzuki
,
T.
, 2008, “
A Molecular Dynamics Study of the FCC-BCC Phase Transformation Kinetics of Iron
,”
Scr. Mater.
,
59
, pp.
971
974
.
39.
Smith
,
W.
,
Forester
,
T. R.
, and
Todorov
,
I. T.
, 2007,
The DL_POLY_2 User Manual
,
STFC Daresbury Laboratory
,
Daresbury, Cheshire, UK
.
40.
Pedone
,
A.
,
Malavasi
,
G.
,
Menziani
,
M. C.
,
Cormack
,
A. N.
, and
Segre
,
U.
, 2006, “
A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based Glasses
,”
J. Phys. Chem. B
,
110
(
24
), pp.
11780
11795
.
41.
Imafuku
,
M.
,
Sasajima
,
Y.
,
Yamamoto
,
R.
, and
Doyama
,
M.
, 1986, “
Computer Simulations of the Structures of the Metallic Superlattices Au/Ni and Cu/Ni and Their Elastic Moduli
,”
J. Physics F: Met. Phys.
,
16
(
7
), pp.
823
829
.
42.
Ewald
,
P. P.
, 1921, “
Die Berechnung Optischer Und Elektrostatischer Gitterpotentiale
,”
Ann. Phys.
,
369
(
3
), pp.
253
287
.
43.
Xiong
,
L. M.
,
Chen
,
Y. P.
, and
Lee
,
J. D.
, 2006, “
Atomistic Measure of the Strength of MgO Nanorods
,”
Theor. Appl. Fract. Mech.
,
46
, pp.
202
208
.
44.
Anderson
,
T. L.
, 2005,
Fracture Mechanics Fundamentals and Applications
,
CRC Taylor & Francis
,
Boca Raton, FL
.
45.
Ward
,
I. M.
, 1971,
Mechanical Properties of Solid Polymers
,
John Wiley & Sons
,
New York
.
46.
Fan
,
J.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
, and
Gall
,
K.
, 2003, “
Cyclic Plasticity at Pores and Inclusions in Cast Al-Si Alloys
,”
Eng. Fract. Mech.
,
70
, pp.
1281
1302
.
47.
De Brito Mota
,
F.
,
Justo
,
J. F.
, and
Fazzio
,
A.
, 1998, “
Structural Properties of Amorphous Silicon Nitride
,”
Phys. Rev. B
,
58
(
13
), pp.
8323
8328
.
48.
Tomar
,
V. Gan, M.
, and
Kim
,
H. S.
, 2010, “
Atomistic Analyses of the Effect of Temperature and Morphology on Mechanical Strength of Si-C-N and Si-C-O Nanocomposites
,”
J. Eur. Ceram. Soc.
,
30
(
11
), pp.
2223
2237
.
49.
ABAQUS, Hibbit, Karlsson, Sorenson, Pawtucket, RI, 2011.
You do not currently have access to this content.