Various aspects of the mechanical behavior of epoxy-based nanocomposites with graphene platelets (GPL) as additives are discussed in this article. The monotonic loading response indicates that at elevated temperatures, the elastic modulus and the yield stress are significantly improved in the composite as compared to neat epoxy. The activation energy for creep is smaller in neat epoxy, which indicates that the composite creeps less, especially at elevated temperatures and higher stresses. The composites also exhibit larger fracture toughness. When subjected to cyclic loading, fatigue crack growth rate is smaller in the composite relative to neat epoxy. This reduction is important by at least an order of magnitude at all stress intensity factor amplitudes. Optimal property improvements in the monotonic, cyclic, and fracture behaviors are obtained for very low filling fraction of approximately 0.1 wt. %. Similar differences in the mechanical behavior are observed when the composite is probed on the local scale by nanoindentation.

References

References
1.
Potts
,
J. R.
,
Dreyer
,
D. R.
,
Bielawski
,
C. W.
, and
Ruoff
,
R. S.
, 2011, “
Graphene-Based Polymer Nanocomposites
,”
Polymer
,
52
(
1
), pp.
5
25
.
2.
Li
,
B.
, and
Zhong
,
W.-H.
, 2011, “
Review on Polymer/Graphite Nanoplatelet Nanocomposites
,”
J. Mater. Sci.
,
46
(
17
), pp.
5595
5614
.
3.
Ash
,
B. J.
,
Siegel
,
R. W.
, and
Schadler
,
L. S.
, 2004, “
Mechanical Behavior of Alumina/Poly(Methyl Methacrylate) Nanocomposites
,”
Macromolecules
,
37
(
4
), pp.
1358
1369
.
4.
Coleman
,
J.
,
Khan
,
U.
,
Blau
,
W.
, and
Gun’ko
,
Y.
, 2006, “
Small But Strong: A Review of the Mechanical Properties of Carbon Nanotubepolymer Composites
,”
Carbon
,
44
(
9
), pp.
1624
1652
.
5.
Ajayan
,
P. M.
,
Schadler
,
L. S.
,
Giannaris
,
C.
, and
Rubio
,
A.
, 2000, “
Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness
,”
Adv Mater
,
12
(
10
), pp.
750
753
.
6.
Schadler
,
L. S.
,
Giannaris
,
S. C.
, and
Ajayan
,
P. M.
, 1998, “
Load Transfer in Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
73
(
26
), p.
3842
.
7.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T.-W.
, 2001, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
(
13
), pp.
1899
1912
.
8.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
, 2006, “
Graphene-Based Composite Materials
,”
Nature (London)
,
442
(
7100
), pp.
282
286
.
9.
McAllister
,
M. J.
,
Li
,
J.-l.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Abdala
,
A. A.
,
Liu
,
J.
,
Herrera-Alonso
,
M.
,
Milius
,
D. L.
,
Car
,
R.
,
Prud’homme
,
R. K.
, and
Aksay
,
I. A.
, 2007, “
Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite
,”
Chem. Mater.
,
19
(
18
), pp.
4396
4404
.
10.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
, 2009, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
.
11.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera-Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
,
I. A.
,
Prud’homme
,
R. K.
, and
Brinson
,
L. C.
, 2008, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat. Nanotechnol.
,
3
(
6
), pp.
327
331
.
12.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
, 2010, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.
13.
Schniepp
,
H. C.
,
Li
,
J.-L.
,
McAllister
,
M. J.
,
Sai
,
H.
,
Herrera-Alonso
,
M.
,
Adamson
,
D. H.
,
Prud’homme
,
R. K.
,
Car
,
R.
,
Saville
,
D. A.
, and
Aksay
,
I. A.
, 2006, “
Functionalized Single Graphene Sheets Derived From Splitting Graphite Oxide
,”
J. Phys. Chem. B
,
110
(
17
), pp.
8535
8539
.
14.
Zandiatashbar
,
A.
,
Picu
,
C. R.
, and
Koratkar
,
N.
, 2012, “
Control of Epoxy Creep Using Graphene
,” Small, in press. DOI:
15.
Shames
,
I. H.
, and
Cozzarelli
,
F. A.
, 1997,
Elastic and Inelastic Stress Analysis: Revised Printing
,
Taylor & Francis
,
Washington, D.C
.
16.
Zhang
,
W.
,
Picu
,
R. C.
, and
Koratkar
,
N.
, 2007, “
Suppression of Fatigue Crack Growth in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
91
(
19
), p.
193109
.
17.
Erdogan
,
F.
, and
Joseph
,
P. F.
, 1989, “
Toughening of Ceramics Through Crack Bridging by Ductile Particles
,”
J. Am. Ceram. Soc.
,
72
(
2
), pp.
262
270
.
18.
Zhang
,
W.
,
Picu
,
R. C.
, and
Koratkar
,
N.
, 2008, “
The Effect of Carbon Nanotube Dimensions and Dispersion on the Fatigue Behavior of Epoxy Nanocomposites
,”
Nanotechnology
,
19
(
28
), p.
285709
.
19.
Putz
,
K. W.
,
Palmeri
,
M. J.
,
Cohn
,
R. B.
,
Andrews
,
R.
, and
Brinson
,
L. C.
, 2008, “
Effect of Cross-Link Density on Interphase Creation in Polymer Nanocomposites
,”
Macromolecules
,
41
(
18
), pp.
6752
6756
.
20.
Zandiatashbar
,
A.
,
Picu
,
C. R.
, and
Koratkar
,
N.
, 2011, “
Depth Sensing Indentation of Nanoscale Graphene Platelets in Nanocomposite Thin Films
,”
Mater. Res. Soc. Symp. Proc.
,
1312
, pp.
1
6
.
You do not currently have access to this content.