Polycrystalline tungsten is considered as an important material in aerospace, automobile, and energy industries due to its excellent thermal and mechanical properties. While grain boundaries (GBs) are perceived to play a major role in polycrystalline tungsten failure resistance, experimental data are scarce on explicit contribution of GBs to tungsten failure resistance. The present work focuses on understanding the effect of GB property variation on fracture resistance of polycrystalline tungsten. The cohesive finite element method is used for the simulation of crack propagation in polycrystalline tungsten microstructures. The results show a significant effect of GB property variation on change of crack propagation patterns during tungsten fracture. A variation of 10% in GB fracture energy resulted in distinctly different crack patterns with different primary crack propagation direction and the microcrack density. Based on the observed microstructural fracture attributes, a relation between cohesive energy dissipation and microcrack density in polycrystalline tungsten microstructures is proposed.

References

References
1.
Hardell
,
J.
,
Kassfeldt
,
E.
, and
Prakash
,
B.
, 2008, “
Friction and Wear Behaviour of High Strength Boron Steel at Elevated Temperatures of Up to 800°C
,”
Wear
,
264
(
9-10
), pp.
788
799
.
2.
Savarimuthu
,
A.
,
Taber
,
H. F.
,
Megat
,
I.
,
Shadley
,
J. R.
,
Rybicki
,
E. F.
,
Cornell
,
W. C.
,
Emery
,
W. A.
,
Somerville
,
D. A.
, and
Nuse
,
J. D.
, 2001, “
Sliding Wear Behavior of Tungsten Carbide Thermal Spray Coatings for Replacement of Chromium Electroplate in Aircraft Applications
,”
J. Therm. Spray Technol.
,
10
(
3
), pp.
502
510
.
3.
Sharafat
,
S.
,
Ghoniem
,
N. M.
,
Anderson
,
M.
,
Williams
,
B.
,
Blanchard
,
J.
, and
Snead
,
L.
, 2005, “
Micro-Engineered First Wall Tungsten Armor for High Average Power Laser Fusion Energy Systems
,”
J. Nucl. Mater.
,
347
(
3
), pp.
217
243
.
4.
Rupp
,
D.
,
Mönig
,
R.
,
Gruber
,
P.
, and
Weygand
,
S. M.
, 2010, “
Fracture Toughness and Microstructural Characterization of Polycrystalline Rolled Tungsten
,”
Int. J. Refract. Metals Hard Mater.
,
28
(
6
), pp.
669
673
.
5.
Dummer
,
T.
,
Lasalvia
,
J. C.
,
Ravichandran
,
G.
, and
Meyers
,
M. A.
, 1998, “
Effect of Strain Rate on Plastic Flow and Failure in Polycrystalline Tungsten
,”
Acta Mater.
,
46
(
17
), pp.
6267
6290
.
6.
Gumbsch
,
P.
, 2003, “
Brittle Fracture and the Brittle-to-Ductile Transition of Tungsten
,”
J. Nucl. Mater.
,
323
(
2-3
), pp.
304
312
.
7.
Lankford
,
J.
,
Anderson
,
C. E.
, and
Bodner
,
S. R.
, 1988, “
Fracture of Tungsten Heavy Alloys Under Impulsive Loading Conditions
,”
J. Mater. Sci. Lett.
,
7
(
12
), pp.
1355
1358
.
8.
Brenner
,
D. W.
,
Shenderova
,
O. A.
, and
Areshkin
,
D. A.
, 1998, “
Quantum-Based Analytic Interatomic Forces and Materials Simulation
,”
Reviews in Computational Chemistry
,
John Wiley & Sons, Inc.
,
New York
, pp.
207
239
.
9.
Xu
,
Q.
,
Yoshiie
,
T.
, and
Huang
,
H. C.
, 2003, “
Molecular Dynamics Simulation of Vacancy Diffusion in Tungsten Induced by Irradiation
,”
Nucl. Instrum. Methods Phys. Res. B
,
206
, pp.
123
126
.
10.
Rice
,
R. W.
, and
Freiman
,
S. W.
, 1981, “
Grain-Size Dependence of Fracture Energy in Ceramics: II, A Model for Noncubic Materials
,”
J. Am. Ceram. Soc.
,
64
(
6
), pp.
350
354
.
11.
Margevicius
,
R. W.
,
Riedle
,
J.
, and
Gumbsch
,
P.
, 1999, “
Fracture Toughness of Polycrystalline Tungsten Under Mode I and Mixed Mode I/II Loading
,”
Mater. Sci. Eng. A
,
270
(
2
), pp.
197
209
.
12.
Klopp
,
R. W.
, and
Shockey
,
D. A.
, 1991, “
The Strength Behavior of Granulated Silicon Carbide at High Strain Rates and Confining Pressure
,”
J. Appl. Phys.
,
70
(
12
), pp.
7318
7326
.
13.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
, 2002, “
Response of Silicon Carbide to High Velocity Impact
,”
J. Appl. Phys.
,
91
(
9
), pp.
5858
5866
.
14.
Walker
,
J.
, 2003, “
Analytically Modeling Hypervelocity Penetration of Thick Ceramic Targets
,”
Int. J. Impact Eng.
,
29
(
1-10
), pp.
747
755
.
15.
Loubens
,
A.
,
Rivero
,
C.
,
Boivin
,
P.
,
Charlet
,
B.
,
Fortunier
,
R.
, and
Thomas
,
O.
,2005, “
Investigation of Local Stress Fields: Finite Element Modeling and High-Resolution X-Ray Diffraction
,”
MRS Proceedings
,
875
, pp.
229
234
.
16.
Yang
,
J.
,
Yang
,
J.-F.
,
Shan
,
S.-Y.
,
Gao
,
J.-Q.
, and
Ohji
,
T.
, 2006, “
Effect of Sintering Additives on Microstructure and Mechanical Properties of Porous Silicon Nitride Ceramics
,”
J. Am. Ceram. Soc.
,
89
(
12
), pp.
3843
3845
.
17.
Ajayan
,
P. M.
,
Schadler
,
L. S.
, and
Braun
,
P. V.
, 2003,
Nanocomposite Science and Technology
,
Wiley-VCH
,
Weinheim, Germany
.
18.
Tomar
,
V.
, 2008, “
Analyses of the Role of the Second Phase SiC Particles in Microstructure Dependent Fracture Resistance Variation of SiC-Si3N4 Nanocomposites
,”
Modell. Simul. Mater. Sci. Eng.
,
16
, p.
035001
.
19.
Tomar
,
V.
, 2008, “
Analyses of the Role of Grain Boundaries in Mesoscale Dynamic Fracture Resistance of SiC-Si3N4 Intergranular Nanocomposites
,”
Eng. Fract. Mech.
,
75
, pp.
4501
4512
.
20.
Tomar
,
V.
,
Zhai
,
J.
, and
Zhou
,
M.
, 2004, “
Bounds for Element Size in a Variable Stiffness Cohesive Finite Element Model
,”
Int. J. Numer. Methods Eng.
,
61
(
11
):p.
1894
1920
.
21.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20-22
), pp.
2899
2938
.
22.
Xu
,
X. P.
, and
Needleman
,
A.
, 1994, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
, pp.
1397
1434
.
23.
Sorensen
,
B. F.
, and
Jacobsen
,
T. K.
, 2003, “
Determination of Cohesive Laws by the J Integral Approach
,”
Eng. Fract. Mech.
,
70
, pp.
1841
1858
.
24.
Cornec
,
A.
,
Scheider
,
I.
, and
Schwalbe
,
K.-H.
, 2003, “
On the Practical Application of the Cohesive Zone Model
,”
Eng. Fract. Mech.
,
70
, pp.
1963
1987
.
25.
Espinosa
,
H. D.
,
Dwivedi
,
S.
, and
Lu
,
H.-C.
, 2000, “
Modeling Impact Induced Delamination of Woven Fiber Reinforced Composites With Contact/Cohesive Laws
,”
Comput. Methods Appl. Mech. Eng.
,
183
, pp.
259
290
.
26.
Belytschko
,
T.
,
Chiapetta
,
R. L.
, and
Bartel
,
H. D.
, 1976, “
Efficient Large Scale Non-Linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
579
596
.
27.
Zhai
,
J.
, and
Zhou
,
M.
, 2000, “
Finite Element Analysis of Micromechanical Failure Modes in Heterogeneous Brittle Solids
,”
Int. J. Fract.
,
101
, pp.
161
180
.
You do not currently have access to this content.