The flexural response of a three-dimensional (3D) layer-to-layer orthogonal interlocked textile composite has been investigated under quasi-static three-point bending. Fiber tow kinking on the compressive side of the flexed specimens has been found to be a strength limiting mechanism for both warp and weft panels. The digital image correlation (DIC) technique has been utilized to map the deformation and identify the matrix microcracking on the tensile side prior to the peak load in the warp direction loaded panels. It has been shown that the geometrical characteristics of textile reinforcement play a key role in the mechanical response of this class of material. A 3D local–global finite element (FE) model that reflects the textile architectures has been proposed to successfully capture the surface strain localizations in the predamage region. To analyze the kink banding event, the fiber tow is modeled as an inelastic degrading homogenized orthotropic solid in a state of plane stress based on Schapery Theory (ST). The predicted peak stress is in agreement with the tow kinking stress obtained from the 3D FE model.

References

References
1.
Bogdanovich
,
A. E.
, 2006, “
Multi-Scale Modeling, Stress and Failure Analyses of 3-D Woven Composites
,”
J. Mater. Sci.
,
41
(
20
), pp.
6547
6590
.
2.
Cox
,
B. N.
,
Dadkhah
,
M. S.
,
Morris
,
W. L.
, and
Flintoff
,
J. G.
, 1994, “
Failure Mechanisms of 3D Woven Composites in Tension, Compression and Bending
,”
Acta Metall. Mater.
,
42
(
12
), pp.
3967
3984
.
3.
Long
,
A. C.
, 2005,
Design and Manufacturing of Textile Composites
,
Woodhead Publishing Limited
,
Cambridge, England
.
4.
Cox
,
B. N.
, and
Dadkhah
,
M. S.
, 1995, “
The Macroscopic Elasticity of 3D Woven Composites
,”
J. Compos. Mater.
,
29
(
6
), pp.
785
818
.
5.
Quek
,
S. C.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
, 2003, “
Analysis of 2D Triaxial Flat Braided Textile Composites
,”
Int. J. Mech. Sci.
,
45
(
6
), pp.
1077
1096
.
6.
Marrey
,
R.
, and
Sankar
,
B.
, 1997, “
Analytical Methods for Micromechanics of Textile Composites
,”
Compos. Sci. Technol.
,
57
(
6
), pp.
703
713
.
7.
Pankow
,
M.
,
Waas
,
A. M.
, and
Yen
,
C. F
, and
Ghiorse
,
S.
, 2009, “
A New Lamination Theory for Layered Textile Composites That Account for Manufacturing Induced Effects
,”
Composites, Part A
,
40
(
12
), pp.
1991
2003
.
8.
Huang
,
Z. M.
, 2000, “
The Mechanical Properties of Composites Reinforced With Woven and Braided Fabrics
,”
Compos. Sci. Technol.
,
60
(
4
), pp.
479
498
.
9.
Cox
,
B. N.
,
Dadkhah
,
M. S.
,
Inman
,
R. V.
,
Morris
,
W. L.
, and
Zupon
,
J.
, 1992, “
Mechanisms of Compressive Failure in 3D Composites
,”
Acta Metall. Mater.
,
40
(
12
), pp.
3285
3298
.
10.
Lomov
,
S. V.
,
Ivanov
,
D. S.
,
Verpoest
,
I.
,
Zako
,
M.
,
Kurashiki
,
T.
,
Nakai
,
H.
, and
Hirosawa
,
S.
, 2007, “
Meso-FE Modeling of Textile Composites: Road Map, Data Flow and Algorithms
,”
Compos. Sci. Technol.
,
67
(
9
), pp.
1870
1891
.
11.
Huang
,
H. J.
, and
Waas
,
A. M.
, 2009, “
Modelling and Predicting the Compression Strength Limiting Mechanisms in Z-Pinned Textile Composites
,”
Composites, Part B
,
40
(
6
), pp.
530
539
.
12.
Rao
,
M. P.
,
Sankar
,
B. V.
, and
Subhash
,
G.
, 2009, “
Effect of Z-Yarns on the Stiffness and Strength of Three-Dimensional Woven Composites
,”
Composites, Part B
,
40
(
6
), pp.
540
551
.
13.
Quek
,
S. C.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
, 2006, “
Failure Mechanics of Triaxially Braided Carbon Composites Under Combined Bending-Compression Loading
,”
Compos. Sci. Technol.
,
66
(
14
), pp.
2548
2556
.
14.
Budiansky
,
B.
, and
Fleck
,
N. A.
, 1993, “
Compressive Failure of Fiber Composites
,”
J. Mech. Phys. Solids
,
41
(
1
), pp.
183
211
.
15.
Kyriakides
,
S.
,
Arseculeratne
,
R.
,
Perry
,
E. J.
, and
Fiechti
,
K. M.
, 1995, “
On the Compressive Failure of Fiber Reinforced Composites
,”
Int. J. Solids Struct.
,
32
(
6/7
), pp.
689
738
.
16.
Lee
,
S. H.
, and
Waas
,
A. M.
, 1999, “
Compressive Response and Failure of Fiber Reinforced Unidirectional Composites
,”
Int. J. Fract.
,
100
(
3
), pp.
275
306
.
17.
Feld
,
N.
,
Allix
,
O.
,
Baranger
,
E.
, and
Guimard
,
J. M.
, 2011, “
Micro-Mechanical Prediction of UD Laminates Behavior Under Combined Compression Up To Failure: Influence of Matrix Degradation
,”
J. Compos. Mater.
,
45
(
22
), pp.
2317
2333
.
18.
Chen
,
R.
,
Dong
,
C.
,
Liang
,
Z.
,
Zhang
,
C.
, and
Wang
,
B.
, 2004, “
Flow Modeling and Simulation for Vacuum Assisted Resin Transfer Molding Process With the Equivalent Permeability Method
,”
Polym. Compos.
,
25
(
2
), pp.
146
164
.
19.
Zhou
,
Y.
,
Pervin
,
F.
,
Biswas
,
M.
,
Rangari
,
V.
, and
Jeelani
,
S.
, 2006, “
Fabrication and Characterization of Montmorillonite Clay-Filled SC-15 Epoxy
,”
Mater. Lett.
,
60
(
7
), pp.
869
873
.
20.
Pankow
,
M. R.
, 2010, “
The Deformation Response of 3D Woven Composites Subjected to High Rates of Loading
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
21.
Song
,
S.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
,
Faruque
,
O.
, and
Xiao
,
X.
, 2009, “
Compression Response, Strength and Post-Peak Response of an Axial Fiber Reinforced Tow
,”
Int. J. Mech. Sci.
,
51
(
7
), pp.
491
499
.
22.
Chen
,
W. F.
, and
Han
,
D. J.
Plasticity for Structural Engineers
,
J. Ross Publishing
,
Fort Lauderdale, FL
.
23.
Basu
,
S.
,
Waas
,
A. M.
, and
Ambur
,
D. R.
, 2006, “
A Macroscopic Model for Kink Banding Instabilities in Fiber Composites
,”
J. Mech. Mater. Struct.
,
1
(
6
), pp.
979
1000
.
24.
Basu
,
S.
,
Waas
,
A. M.
, and
Ambur
,
D. R.
, 2007, “
Prediction of Progressive Failure in Multidirectional Composite Laminated Panels
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2648
2679
.
25.
Song
,
S.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
,
Xiao
,
X.
, and
Faruque
,
O.
, 2007, “
Braided Textile Composites Under Compressive Loads: Modeling the Response, Strength and Degradation
,”
Compos. Sci. Technol.
,
67
(
15–16
), pp.
3059
3070
.
26.
Schapery
,
R. A.
, 1990, “
A Theory of Mechanical Behavior of Elastic Media With Growing Damage and Other Changes in Structure
,”
J. Mech. Phys. Solids
,
38
(
2
), pp.
215
253
.
27.
Schapery
,
R. A.
, 1995, “
Prediction of Compressive Strength and Kink Bands in Composites Using a Work Potential
,”
Int. J. Solids Struct.
,
32
(
6/7
), pp.
739
765
.
You do not currently have access to this content.